Incentivized Exploration

IJCAI 2021 tutorial

Alex Slivkins (Microsoft Research NYC)

https://www.microsoft.com/en-us/research/people/slivkins/

Based on my survey "Exploration & Persuasion" (2021)

http://slivkins.com/work/ExplPers.pdf

See also Chapter 11 of my bandits book (https://arxiv.org/abs/1904.07272)

Abstract (from the program)

How do you incentivize self-interested agents to explore when they prefer to exploit? In contrast with traditional formulations of exploration-exploitation tradeoff, agents control the choice of actions, whereas an algorithm can only issue recommendations. This problem space combines (algorithmic) exploration and (strategic) communication. The tutorial will be self-contained, providing sufficient background on both.

Our scope: incentivized exploration

Incentivize self-interested agents to *explore* when they prefer to *exploit*

Exploration & Incentives

ML & Economics

Multi-armed bandits with Bayesian persuasion

Outline:

- ☐ (brief) background on multi-armed bandits
- deep-dive into "incentivized exploration"
 - □(brief) background on Bayesian persuasion

Bandits: examples

- Dynamic pricing.
 - You release a song which customers can download for a price. What price will maximize profit?
 - Customers arrive one by one, you can update the price
- Web advertisement.
 - Every time someone visits your site, you display an ad. Many ads to choose from. Which one maximizes #clicks?
 - you can update your selection based on the clicks received

Basic model

• *K* actions ("arms"), *T* rounds

arms rewards

pricing prices payments

web ads ads clicks

- In each round $t = 1 \dots T$ algorithm chooses an arm a_t , and observes the reward $r_t \in [0,1]$ for the chosen arm
- "Bandit feedback": no other rewards are observed!
- IID rewards: reward for each arm is drawn independently from a fixed distribution specific to this arm

 $\mu = .6$

 $\mu = .2$

 $\mu=.4$

Basic model

• *K* actions ("arms"), *T* rounds

- arms rewards

 pricing prices payments

 web ads ads clicks
- In each round $t = 1 \dots T$ algorithm chooses an arm a_t , and observes the reward $r_t \in [0,1]$ for the chosen arm
- "Bandit feedback": no other rewards are observed!
- IID rewards: reward for each arm is drawn independently from a fixed distribution specific to this arm
- Regret $R(T) = T\mu^* \sum_{t \in [T]} r_t$ $\mu_a \in [0,1]$: mean reward of arm α (fixed over time) best arm benchmark: $\mu^* = \max_a \mu_a$
- Bayesian bandits: (μ_a : arms a) drawn from known prior Bayesian regret: $E_{prior}[R(T)]$

Exploration vs Exploitation

- Explore: try out new arms to get more info... perhaps playing low-paying arms
- Exploit: play arms that seem best based on current info ... but maybe there is a better arm we don't know about
- Bandits: fundamental model for explore-exploit tradeoff
- Studied since 1933 in OR, Econ, CS, Stats, various versions and extensions

 $\mu = .6$

 $\mu=.2$

 $\mu=.4$

More examples

Example	Action	Rewards / costs
medical trials	drug to give	health outcomes
internet ads	which ad to display	bid value if clicked, 0 othw
content optimization	e.g.: font color or page layout	#clicks
sales optimization	which products & prices to offer	\$\$\$
recommender systems	suggest a movie, restaurants, etc.	user satisfaction
computer systems	which server(s) to route the job to	job completion time
crowdsourcing systems	assign tasks to workers	quality of completed work
	which price to offer?	#completed tasks
wireless networking	which frequency to use?	#successful transmissions
robot control	a "strategy" for a given state & task	#tasks successfully completed
game playing	an action for a given game state	#games won

Many "problem dimensions"

```
Non-IID rewards: e.g., chosen by an adversary (constrained adversary: rewards cannot change too much or too often)
```

Context observed before each round (e.g.: user profile/features)

Known structure: e.g.: arms are points in $[0,1]^d$, rewards are linear/concave/Lipschitz function of the arm

Bayesian prior (problem instance comes from known distribution)

Global constraints: e.g.: limited #items to sell

Complex decisions: a slate of articles, prices for several products

Books on bandits: Gittins et al. (2011), Bubeck & Cesa-Bianchi (2012), [more current] Slivkins (2019-2021), Lattimore & Szepesvari (2020)

Example: Two-armed bandits

Non-adaptive exploration (does not adapt to observations)

- try each arm N times (explore), choose the best one & exploit
- concentration $=> |\mu_a \hat{\mu}_a| < \frac{\log 1/\delta}{\sqrt{N}}$ w/prob 1δ
- lose $\sim \sqrt{N}$ per round in exploit, ~ 1 /round in explore, optimize N = regret $R(T) = \tilde{O}(T^{2/3})$ optimal for nonadaptive exploration

Adaptive exploration

- alternate arms until one of them is better w.h.p., then exploit
- concentration: $G := |\mu_1 \mu_2| < \tilde{O}\left(\frac{1}{\sqrt{t}}\right) \forall \text{round } t \text{ in exploration}$
- regret R(T) = $\tilde{O}(\min(\sqrt{T}, {}^{1}/_{G}))$

Outline

√ (brief) background on bandits

Deep-dive into "incentivized exploration"

How to incentivize self-interested agents to explore if they prefer to exploit?

Motivation: recommender systems

- Watch this movie
- Dine in this restaurant
- Vacation in this resort
- Buy this product
- Drive this route
- See this doctor

Info flow in recommender system

- user arrives, needs to choose a product
- receives recommendation (& extra info)
- chooses a product, leaves feedback

consumes info from prior users

produces info for future users

For common good, user population should balance

- exploration: trying out various alternatives to gather info
- exploitation: making best choices given current info

Example: coordinate via system's recommendations.

Misaligned incentives

Problem: self-interested users (agents) favor exploitation

- Under-exploration: some actions explored at sub-optimal rate Ex: best action remains unexplored if it seems worse initially
- Selection bias: chosen action & outcome depend on agents' type

Ex: you may only see people who are likely to like this movie

- rarely see some sub-population => learn slowly, at best
- data is unreliable at face value

Model: incentivized exploration default: full history

• T rounds, K actions ("arms"). In each round t: "GREEDY algorithm" new agent arrives, observes something (msg_t),

chooses an arm, and reports her reward $\in [0,1]$

• IID rewards: reward of arm a drawn from distribution D_a Distributions fixed but unknown; common Bayesian prior Objective: social welfare (= cumulative reward)

Rational choice: $argmax_{arms a} E[\mu_a | msg_t]$

deterministic rewards

What goes wrong with GREEDY

 $a_t \in \operatorname{argmax}_a E[\mu_a | H_t], H_t \text{ is history } @ \text{ round } t \text{ (exploitation-only)}$

• 2 arms, $G := E[\mu_1 - \mu_2] > 0$

- expectation over the prior
- Round 1: arm 1 is chosen, μ_1 is observed

exploration fails"

• If $\mu_1 > E[\mu_2]$ then arm 2 is never chosen

randomized rewards

What goes wrong with GREEDY

 $a_t \in \operatorname{argmax}_a E[\mu_a | H_t], H_t \text{ is history } @ \text{ round } t \text{ (exploitation-only)}$

- 2 arms, $G := E[\mu_1 \mu_2] > 0$
- expectation over the prior
- Thm: $Pr[arm 2 \text{ is never chosen}] \geq G$

exploration fails"

- Proof: Let τ first time arm 2 is chosen, T+1 othw
 - $\bullet \ Z_t = E[\mu_1 \mu_2 \mid H_t]$

 $Z_t > 0 \Rightarrow \text{arm } 1$

• $E[Z_t | H_{t-1}] = Z_{t-1}$

(Doob) martingale

ullet au is a "stopping time" determined by H_t

Optional Stopping Theorem

•
$$G = E[Z_1] = E[Z_{\tau}]$$

= $\Pr[\tau \le T] E[Z_{\tau} | \tau \le T] + \Pr[\tau > T] E[Z_{\tau} | \tau > T]$

$$a_{\tau} = 2$$
, so $Z_{\tau} \le 0$

"arm 2 never chosen

 ≤ 1

Incentivize exploration without payments

How to incentivize agents to try seemingly sub-optimal actions?

based on agents' biases and/or system's current info)

"External" incentives:

- monetary payments / discounts
- promise of a higher social status
- people's desire to experiment

prone to selection bias; not always feasible

Incentivize exploration without payments

How to incentivize agents to try seemingly sub-optimal actions?

based on agents' biases and/or system's current info)

"External" incentives:

- monetary payments / discounts
- promise of a higher social status
- people's desire to experiment

prone to selection bias; not always feasible

Recommendation systems

Our approach: create info asymmetry by not revealing full history

Vacation in this resort
Buy this product
Drive this route
See this doctor

Incentivized Exploration

- T rounds, K actions ("arms"). In each round t: new agent arrives, observes *something* (msg_t), chooses an arm, and reports her reward $\in [0,1]$
- IID rewards: reward of arm a drawn from distribution D_a Distributions fixed but unknown; common Bayesian prior Objective: social welfare (= cumulative reward)

Rational choice: $argmax_{arms a} E[\mu_a | msg_t]$

w.l.o.g. msg_t is a suggested arm, & algorithm is *Bayesian Incentive-Compatible* (BIC):

$$E[\mu_a - \mu_b | msg_t = a] \ge 0 \quad \forall t, arms a, b$$

bandit algorithm with BIC constraint

chosen by algorithm

compare BIC algs vs. optimal algs

Paper trail (by first pub)

Kremer, Mansour, Perry (2013)

Che & Horner (w.p. 2013)

Mansour, Syrgkanis, Slivkins (2015)

Papanastasiou, Bimpikis, Savva (w.p. 2015)

Mansour, Syrgkanis, Slivkins, Wu (2016)

Bahar, Smorodinsky, Tennenholtz (2016)

Schmit & Riquelme (2018)

Immorlica, Mao, Slivkins, Wu (2019)

Immorlica, Mao, Slivkins, Wu (2020)

Bahar, Smorodinsky, Tennenholtz (2019)

Cohen & Mansour (2019)

Sellke & Slivkins (2021)

Slivkins & Simchowitz (2021)

Home community: economics & computation (ACM EC)

"Zoom out"

Outline

√ (brief) background on bandits

Deep-dive into "incentivized exploration"

- ✓ Motivation & model
- □ Focus on a single round: Bayesian Persuasion

One round: Bayesian Persuasion

Game protocol

- principal receives a signal, recommends an arm rec
- agent observes **rec** and chooses an arm a_*
- rewards: μ_a for the agent, u_a for the principal

What's known

- Bayesian prior on (reward vectors μ ,u; signal)
- principal's policy: signal → recommendation

Rational agent

$$a_* = \operatorname{argmax}_{\operatorname{arms} a} E[\mu_a | \operatorname{rec}]$$

Principal's goal

Choose policy to maximize $E[u_{a_*}]$

$$\operatorname{wlog} E[\mu_1] > E[\mu_2]$$

In "incentivized exploration"

- Signal: algorithm's history; e.g., u = (0,1) (principal's goal: explore arm 2)
- Example: T=2 & deterministic rewards In round 2: Bayesian Persuasion with signal μ_1

2 arms, $E[\mu_1] > E[\mu_2]$ Signal $\mu_1 \in \{L, H\}$ Principal's reward u = (0,1)

Ex: Bayesian Persuasion

Exact solution

$$E[u_{a_*}] = \frac{H - E[\mu_1]}{H - E[\mu_2]}$$

Under "full revelation": $E[\mu_2] \rightarrow L$

Technique

foundational in BP

- 1. Belief $B_{\pi} = \Pr(\mu_1 = H \mid \text{rec})$ given policy π RV on [0,1] with expectation $\Pr[\mu_1 = H]$ realization determines the agent's choice
- 2. Any *consistent* RV is realized as B_{π} for some π
- 3. Maximize directly over all consistent beliefs

"Consistent belief"

Recap: completely solved (a special case of) Incentivized Exploration with T=2 & deterministic rewards

Outline

√ (brief) background on bandits

Deep-dive into "incentivized exploration"

- ✓ Motivation & model
- ✓ One round: Bayesian Persuasion
- □ A general solution

Hidden exploration

Key idea: Hide exploration in a large pool of exploitation

Enough initial samples \Rightarrow any arm could be the exploit arm! Agent does not know if it is exploitation or exploitation Explore prob. low enough \Rightarrow follow recommendation.

Mansour, Slivkins, Syrgkanis (2015)

Repeated

Hidden exploration

Key idea: Hide exploration in a large pool of exploitation

"Explore" prob. low enough \Rightarrow follow recommendation.

Performance: pick arm 2 with (small) const prob in each round Non-adaptive exploration (can exploit after fixed #rounds)

Repeated

Simulate bandit algorithm ${\cal A}$

Hidden exploration

Key idea: Hide exploration in a large pool of exploitation

"Explore" prob. low enough \Rightarrow follow recommendation.

Performance: $\mathbb{E}_{prior}[reward]$ of exploit arm \geq that of \mathcal{A}

Bayesian regret: match A up to a prior-dependent factor

2 arms: $E[\mu_1] > E[\mu_2]$

Assumptions on the prior

- Hopeless in general: e.g., if μ_1 and $\mu_1 \mu_2$ are independent
- Sufficient condition:

Arm 2 can become "exploit arm" after enough samples of arm 1.

- G_n : = $\mathbb{E}[\mu_2 \mu_1 | n \text{ samples of arm 1}]$ ("posterior gap") $\exists n: \ \mathbb{P}(G_n > 0) > 0$
- This condition is necessary to sample arm 2 in any round *t*
 - Proof: $E[\mu_2 \mu_1 | \text{rec}_t = 2] = E[G_t | \text{rec}_t = 2] \le 0$

Law of iterated expectation & induction on t if the condition is false

• Similar condition suffices for > 2 arms Includes: independent priors, bounded rewards, full support on [L,H]

Outline

- ✓ (brief) background on bandits
- Deep-dive into "incentivized exploration"
 - ✓ Motivation & model
 - ✓ One round: Bayesian Persuasion
 - ✓ A general solution: Hidden Exploration
 - ☐ Extensions in the basic model
 - ☐ Beyond the basic model
 - Concluding remarks

Beyond Bayesian regret

- "Exploit arm" computed via Bayesian update only good in expectation over the prior \Rightarrow only Bayesian regret
- Regret bounds *for each realization of the prior*?

 Different algorithm, (only) uses sample average rewards
- This algorithm is "detail-free"
 - instead of the full prior, inputs (only) two numerical parameters, and only approximately
 - agents can have different beliefs, "consistent" with the inputs

The detail-free algorithm

Define "exploit arm" & "elimination condition" via sample averages. For BIC, connect sample averages to Bayesian posteriors (tricky!). Enough initial samples \Rightarrow "Active arms elimination" is BIC

Optimal regret bounds

For each realization of the prior \mathcal{P} :

Constant # arms

$$Regret(T) = O\left(\frac{c_{\mathcal{P}}}{\text{Gap}}, \sqrt{T \log T}\right)$$

Depends on \mathcal{P} .

"Price" for BIC.

Tap between best & 2nd-best arm

Optimal regret for given Gap.

optimal regret in the worst case

Loss in performance compared to bandits

Price of Incentives

Problem

Sample complexity: #rounds to explore each arm once Independent priors: K arms, all arms' priors from family \mathcal{F}

Results

#rounds is linear or exponential in K, depending on \mathcal{F}

For Beta priors and truncated Gaussian priors,

- #rounds is linear in *K*
- exponential in "strength of beliefs": $1/\min_{P \in \mathcal{F}} Var(P)$

Algorithm

Probabilistically chooses between three branches: exploration, exploitation & "secret sauce" combining both; Exploration prob increases exponentially over time

Sellke & Slivkins (2021)

Extension 3

"Natural" BIC algorithms

- Thompson Sampling: standard, optimal bandit algorithm
- Thompson sampling is BIC given a "warm-start":
 N samples from each arm, where N determined by the prior
 - assume independent priors
 - N is linear in K = # arms, and $O(\log K)$ for Beta priors
 - alt: collect the *N* samples exogenously (e.g., pay)
- "Price of Incentives": performance loss due to the warm-start
 - Bayesian regret ≤ #rounds,
 - use "sample complexity" results to bound #roundsc
- Similar results for other "natural" bandit algorithms ???

Extension 4

Optimal BIC algorithms

$$E[\mu_1] > E[\mu_2]$$

Result

Optimal BIC algorithm for 2 arms & deterministic rewards (first result on incentivized exploration: Kremer, Mansour, Perry '13)

algorithm

- in round 1, sample arm 1, observe μ_1
- place μ_1 among thresholds $0 = \theta_1 < \theta_2 < \theta_3 < \cdots$ let n be such that $\theta_n \le \mu_1 < \theta_{n+1}$
- first time choose arm 2 in round n, choose the better arm ever after

Analysis outline

- 1. There is an optimal BIC algorithm which is "threshold-based"
- 2. Optimize among "threshold-based" algorithms

Outline

- √ (brief) background on bandits
- Deep-dive into "incentivized exploration"
 - ✓ Motivation & model
 - ✓ One round: Bayesian Persuasion
 - ✓ A general solution: Hidden Exploration
 - ✓ Extensions in the basic model
 - ☐ Beyond the basic model
 - Concluding remarks

For literature review, see the survey and Ch. 11.6 in my bandits book

Beyond the basic model

Extend the ML model

- auxiliary feedback before and/or after each round
- large, structured problems, e.g., incentivized RL

Extend the Econ model

- heterogenous agents (public or private types)
- multiple agents playing a game
- inevitable revelation: some history observed no matter what
- a common theme: explore all "explorable" arms (some arms aren't)
- relax rationality assumptions

[Relaxing] rationality assumptions

- "Power to commit" to the algorithm: do I know the algorithm?

 Do I trust the platform to implement it?
- Cognitive limitations: e.g., can/would I do a Bayesian update?
- Rational choice: would I just optimize expected utility?
 - Risk aversion, SoftMax vs HardMax
 - "experimentation aversion"

How to ensure predictable user behavior?

Immorlica, Mao, Slivkins, Wu (2020)

Unbiased histories

- Users want full history; let's give them the next best thing
- Principal only chooses partial order (DAG) on rounds

of the relevant sub-algorithm

- Each user sees full history *of her branch*"Unbiased history": data-independent, e.g., no sub-sampling
- Economics foundation: assumptions only on users that see full history
 - HardMax or SoftMax? anything consistent with confidence intervals

Design the partial order

Each agent is "locally greedy", and yet it works!

Simple construction (2 arms): regret $T^{2/3}$

Two "levels": implements non-adaptive exploration

Can we get \sqrt{T} regret?

Adaptive exploration

Beat the $T^{2/3}$ barrier: $T^{4/7}$ regret with 3 levels

Figure 2: Info-graph for the three-level policy. Each red box in level 1 corresponds to T_1 full-disclosure paths of length L_K^{FDP} each.

Adaptive exploration

 \sqrt{T} regret with $\log T$ levels (for constant #arms)

Figure 3: Interlacing connections between levels for the *L*-level policy.

Outline

√ (brief) background on bandits

Deep-dive into "incentivized exploration"

- ✓ Motivation & model
- ✓ One round: Bayesian Persuasion
- ✓ A general solution: Hidden Exploration
- ✓ Extensions in the basic model
- ✓ Beyond the basic model
- Concluding remarks

Perhaps "full revelation" suffices?

- Does greedy algorithm work? Yes, for linear bandits with smoothed/diverse contexts Bastani, Bayati, Khosravi '18 \sqrt{T} regret: (Kannan, Morgenstern, Roth, Waggoner, Wu '18) $T^{1/3}$ Bayesian regret: (Raghavan, Slivkins, Vaughan, Wu; '18)
- Maybe different people just try out different things?
 Probably not enough: want best action for each type
 (and exploring all what's explorable was very tricky!)

Yes, under strong assumptions

Schmit & Riquelme, '18; Acemoglu, Makhdoumi, Malekian, Ozdaglar, '17

All directions very open, despite substantial prior work on some

Open questions

- Re relaxed economic assumptions:
 Do we have the "right" ones? (and what does "right" mean?)
 Make the constructions simpler/ more general / more robust
- [Adapting to] partially known priors
- Long-lived agents
- Inevitable observations:
 some aspects of the history are always observed
- Heterogenous agents: regret bounds?Can we use diversity to help BIC exploration?

Connection to medical trials

Medical trial as a bandit algorithm: for each patient, choose a drug

- one of original motivations for bandits
- basic design: new drug vs. placebo (blind, randomized)
 "advanced" designs studied & used (adaptive, >2 arms, contexts)
- Participation incentives: why take less known drug?
 Major obstacle, esp. for wide-spread diseases & cheap drugs.
- Medical trial as a BIC recommendation algorithm!
 - minimal info disclosure is OK for medical trials

See literature review in Ch. 11.6 in my bandits book

Bandits & agents

- agents choose actions => incentivized exploration via info asymmetry (our scope) and/or with money
- agents choose bids => repeated auctions

 dynamic auctions (ex: Athey & Segal`13, Bergemann & Valimaki`10)

 ad auctions with unknown CTRs (ex: Babaioff, Kleinberg, Slivkins`10)
- agents only affect rewards
 dynamic {pricing, assortment, contract design}
- agents (users) choose between bandit algorithms

Bandit algorithms compete for users (e.g., Google vs Bing) (ex: Aridor, Mansour, Slivkins, Wu `20)