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Abstract

In the multi-armed bandit (MAB) problem there are k distributions associated with the
rewards of playing each of k strategies (slot machine arms). The reward distributions are
initially unknown to the player. The player iteratively plays one strategy per round, observes
the associated reward, and decides on the strategy for the next iteration. The goal is to maximize
the reward by balancing exploitation: the use of acquired information, with exploration: learning
new information.

We introduce and study a dynamic MAB problem in which the reward functions stochas-
tically and gradually change in time. Specifically, the expected reward of each arm follows a
Brownian motion, a discrete random walk, or similar processes. In this setting a player has to
continuously keep exploring in order to adapt to the changing environment. Our formulation is
(roughly) a special case of the notoriously intractable restless MAB problem.

Our goal here is to characterize the cost of learning and adapting to the changing environ-
ment, in terms of the stochastic rate of the change. We consider an infinite time horizon, and
strive to minimize the average cost per step which we define with respect to a hypothetical
algorithm that at every step plays the arm with the maximum expected reward at this step. A
related line of work on the adversarial MAB problem used a significantly weaker benchmark,
the best time-invariant policy.

The dynamic MAB problem models a variety of practical online, game-against- nature type
optimization settings. While building on prior work, algorithms and steady-state analysis for
the dynamic setting require a novel approach based on different stochastic tools.

*This version is a bug-fix for the COLT 2008 paper, resolving an issue in the proof of Theorem 2.7. Specifically,
we add the two cases in Lemma 2.11(b,c) (the proof of this Lemma remains unchanged), and we use them to prove
Eq. (2.11). In the previous version, Eq. (2.11) was implied but did not follow from what was written. The authors
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2008, other than reformatting and very minor edits.
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1 Introduction

The multi-armed bandit (MAB) problem (Robbins, 1952; Berry and Fristedt, 1985; Gittins, 1989)
has been studied extensively for over 50 years in Operations Research, Economics and Computer
Science literature, modeling online decisions under uncertainty in a setting in which an agent
simultaneously attempts to acquire new knowledge and to optimize its decisions based on the
existing knowledge. In the basic MAB setting, which we term the static MAB problem, there
are k time-invariant probability distributions associated with the rewards of playing each of the k
strategies (slot machine arms). The distributions are initially unknown to the player. The player
iteratively plays one strategy per round, observes the associated reward, and decides on the strategy
for the next iteration. The goal of a MAB algorithm is to optimize the total reward1 by balancing
exploitation: the use of acquired information, with exploration: learning new information. For
several algorithms in the literature (e.g., Berry and Fristedt, 1985; Auer et al., 2002a) as the
number of rounds goes to infinity the expected total reward asymptotically approaches that of
playing a strategy with the highest expected reward. The quality of an algorithm for the static
MAB problem is therefore measured by the expected cost, or regret, incurred during an initial finite
time interval. The regret in the first t steps is defined as the expected gap between the total reward
collected by the algorithm and that collected by playing an optimal strategy in these t steps.

The MAB problem models a variety of practical online optimization problems. As an example
consider a packet routing network where a router learns about delays on routes by measuring the
time to receive an acknowledgment for a packet sent on that route (Awerbuch and Kleinberg, 2008;
Heidari et al., 2007). The delay for one packet on a given route is a random value drawn from
some distribution. The router must try various routes in order to learn about the delays. Trying
a loaded route adds unnecessary delay to the routing of one packet, while discovering a route with
low delay can improve the routing of the future packets.

Another application is in marketing and advertising. A store would like to display and advertise
the products that sell best, but it needs to display and advertise various products to learn how good
they sell. Similarly, a web search engine tries to optimize its revenue by displaying advertisements
that would bring the largest number of clicks for a given web content. The company needs to
experiment with various combinations of advertisements and page contents in order to find the best
matches. The cost of these experiments is the loss of advertisement clicks when trying unsuccessful
matches (Pandey et al., 2007).

The above examples demonstrate the practical applications of the ”explore and exploit” paradigm
captured in the MAB model. These examples also point out the limitation of the static approach
to the problem. The delay on a route is gradually changing over time, and the router needs to
continuously adapt its routing strategy to the changes in route delays. Taste and fashion change
over time. A store cannot completely rely on information collected in the previous season to opti-
mize for the next one. Similarly, a web search engine continually updates their content matching
strategies to account for the changing customers’ response.

A number of models have been proposed for capturing the dynamic aspect of the MAB problem.
Motivated by task scheduling, Gittins and Jones (1974) considered the case where only the state
of the active arm (the arm currently being played) can change in a given step, giving an optimal

1In this paper the total reward is simply the sum of the rewards, following the line of work in (Lai and Robbins,
1985; Auer et al., 2002a,b) and many other papers. Alternatively, many papers consider the time-discounted sum of
rewards (Berry and Fristedt, 1985; Gittins, 1989; Sundaram, 2005, e.g., ) and references therein.
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policy for the Baysean formulation with time discounting. This seminal result gave rise to a rich
line of work, see Gittins et al. (2011) for an overview. In particular, Whittle (1988) introduced
an extension termed restless bandits (Whittle, 1988; Bertsimas and Nino-Mora, 2000; Nino-Mora,
2001), where the states of all arms can change in each step according to a known (but arbitrary)
stochastic transition function. Restless bandits are notoriously intractable: e.g., even with deter-
ministic transitions the problem of computing an (approximately) optimal strategy is pspace-hard
(Papadimitriou and Tsitsiklis, 1994). Guha and Munagala (2007); Guha et al. (2009) have recently
made a progress on some tractable special cases of the restless MAB problem.2 However, their
motivations, the actual problems they considered, and the techniques they used, are very different
from ours.

Auer et al. (2002b) adopted an adversarial approach: they defined the adversarial MAB problem
where the reward distributions are allowed to change arbitrarily in time, and the goal is to approach
the performance of the best time-invariant policy. This formulation has been further studied in Auer
(2002); Kleinberg and Leighton (2003); Kleinberg (2004); McMahan and Blum (2004); Flaxman
et al. (2005); Dani and Hayes (2006b); Kleinberg (2006); Dani and Hayes (2006a). Auer et al.
(2002b); Auer (2002) also considered a more general definition of regret, where the comparison
is to the best policy that can change arms a limited number of times. Due to the overwhelming
strength of the adversary, the guarantees obtained in this line of work are relatively weak when
applied to the setting that we consider in this paper.

We propose and study here a somewhat different approach to addressing the dynamic nature
of the MAB problem. We note that in a variety of practical applications the time evolution of
the system, in particular of the reward functions, is gradual. Obvious examples are price, supply
and demand in economics, load and delay in networks, etc. A gradual stochastic evolution is
traditionally modeled via a random walk or a Brownian motion; for instance, in Mathematical
Finance the (geometric) Brownian motion (Wiener process) is the standard model for continuous-
time evolution of a stock price. In line with this approach, we describe the state of each arm –
its expected reward at time t – via a Brownian motion.3 The actual reward at a given time is an
independent random sample from the reward distribution parameterized by the current state of
this arm, e.g., a 0-1 random variable with an expectation given by the state of the arm (in the web
advertising setting this corresponds to a user clicking or not clicking on an ad).

We are interested in systems that exhibit a stationary, steady-state behavior. For this reason
instead of the usual Brownian motion on a real line (which diverges to infinity) we consider a
Brownian motion on an interval with reflecting bounds. Following the bulk of the stochastic MAB
literature, we assume that the evolution of each arm is independent (in fact, we conjecture that
regret is maximized in the case of independently evolving arms).

Our goal here is to characterize the long-term average cost of adapting to such changing en-
vironment in terms of the stochastic rate of change – the volatility of Brownian motion. The
paradigmatic setting for us is one in which each arm’s state has the same stationary distribution
and, therefore, all arms are essentially equivalent in the long term. In such setting the standard
benchmark – the best time-invariant policy – is uninformative. Instead, we optimize with respect
to a more demanding (and also more natural) benchmark – a policy that at each step plays an arm
with the currently maximal expected reward.

2These papers were published after the initial technical report version of this paper appeared.
3As we only sample arms at integer time points, we can equivalently describe the state as a sum of t i.i.d. normal

increments. In fact, we allow the increments to come from a somewhat more general class of distributions.
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We consider two versions of the dynamic MAB problem described above. In the state-informed
version an algorithm not only receives a reward of the chosen arm but also finds out the current
state of this arm. This is the setting in the restless MAB problem as defined in Whittle Whittle
(1988) and the follow-up literature. In the second, state-oblivious, version an algorithm receives
its reward and no other information. This formulation generalizes the static MAB problem to
stochastically changing expected rewards.

1.1 The Dynamic MAB problem

Let {D(µ) : µ ∈ [0; 1]} be a fixed family of probability distributions on [0; 1] such that D(µ) has
expectation µ. Time proceeds in rounds. Each arm i at each round t has a state µi(t) ∈ [0; 1] such
that the reward from playing arm i in round t is an independent random sample from D(µi(t)).
At each round t an algorithm chooses one of the k alternative strategies (”arms”) and receives
a reward. In the state-oblivious version, the reward is the only information that the algorithm
receives in a given round. In the state-informed version, the algorithm also finds out the current
state of the arm that it has chosen. The distributions D(·) are not revealed to the algorithm (and
are not essential to the analysis).

The state µi(·) varies in an interval with reflecting boundaries. To clarify the concept of reflect-
ing boundaries, consider an object that starts moving on an interval I = [0; 1], reversing direction
every time it hits a boundary. If the object starts at 0 and traverses distance x ≥ 0, its position is

fI(x) =

{
x′, x′ ≤ 1

1− (x′ − 1), x′ > 1,
(1.1)

where x′ = x (mod 2) = x− 2 ⌊x/2⌋. Similarly, we define fI(x), x < 0 as the position of an object
that starts moving from 1 and traverses distance |x|.

For concreteness we focus here on the case when each arm’s state follows a Brownian mo-
tion. Similar results hold for related stochastic processes such as discrete random walks (see the
Extensions Section).

The state of each arm i undergoes an independent Brownian motion on an interval with reflecting
boundaries. Specifically, we define µi(t) = fI(Bi(t)) where I = [0; 1] is the fundamental interval
and Bi is an independent Brownian motion with volatility σi. Since we only sample µi(·) at integer
times, we can also define it as a Markov chain:

µi(t) = fI ( µi(t− 1) +Xi(t) ) , (1.2)

where each Xi(t) is an i.i.d. sample from N (0, σi). The stochastic rate of change is thus given by
σi, which we term the volatility of arm i.

We assume that for each arm i the initial state µi(0) is an independent uniformly random
sample from I. This is a reasonable assumption given our goal to study the stationary behavior
of the system. Indeed, the uniform distribution on I is the stationary distribution of the Markov
chain 1.2 to which this Markov chain eventually converges.4

4The convergence follows from the ergodic theorem. It should be noted that the rate of convergence for Markov
chains with infinite state spaces is a rather delicate matter, e.g., see Rosenthal ?. In this paper the rate of convergence
is non-essential. Moreover, the convergence itself does not appear in the proofs: it is used only as intuition and an
(additional) justification for assuming the uniform distribution of the initial state.
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In the dynamic MAB problem, we measure the performance of a MAB algorithm with respect
to a policy that at every step chooses a strategy with the highest expected reward. This policy
changes in time, and thus it is a more demanding benchmark than the time-invariant regret that
is often used in the MAB literature.

Definition 1.1. Consider an instance of the dynamic MAB problem. For a given MAB algorithm
A, let WA(t) be the reward received by algorithm A in round t. Let Ø be an algorithm that in
every round chooses a strategy with the highest expected reward. The dynamic regret in round t is

RA(t) = WØ(t)−WA(t).

Define the steady-state regret as

R̄A = lim sup
t

sup
t0

E

[
1

t

t0+t∑
s=t0+1

RA(s)

]
. (1.3)

Thus, for any fixed R > R̄A the expected average dynamic regret of algorithm A over any
sufficiently large interval is at most R, and it is the best possible upper bound of this form. Our
goal is to bound R̄A in terms of the arms’ volatility.

We use the following notation throughout the paper. The state of arm i at time t is µi(t). The
maximal state at time t is µ∗(t) = maxi∈[k] µi(t). An arm i is maximal in round t if µi(t) = µ∗(t).

1.2 Results: the state-informed case

We present an algorithm whose steady-state regret is optimal up to a poly-log factor.

Theorem 1.2. Consider the state-informed dynamic MAB problem with k arms, each with volatility
at most σ. Assume that k < σ−γ for some γ < 1

2 . Then there exists a MAB algorithm whose steady-

state regret is at most Õ(kσ2).

The algorithm is very intuitive. An arm with the highest last-observed state is called a leader
and is played often, e.g., at least every other round. Suppose the last time some other arm i
was observed was t rounds ago. By Azuma inequality the state of this arm changed by at most
∆µ = Õ(σ

√
t) since then, with high probability. If µi(t)+∆µ is smaller than the state of the leader,

then there is no point yet in trying arm i again. Else, we mark this arm suspicious and enqueue it
to be played soon.

The main technical contribution here is the analysis, which is quite delicate since we need to
deal with the complicated dependencies in the algorithm’s behavior induced by the stochastically
changing environment. Essentially, we manage to reduce the stochastic aspect of the problem to
simple events in the state space. We achieve it as follows. Every time each arm is played, we
spread the corresponding dynamic regret evenly over the corresponding idle time. This way we
express the cumulative dynamic regret as a sum over the contributions of each arm in each round.
We prove a uniform bound on the expectation of each such contribution. To this end, we identify
a useful high-probability behavior of the system, derive deterministic guarantees conditional on
this behavior (which is the tricky part), and then argue in terms of the corresponding conditional
expectations.

Surprisingly, the steady-state regret of our algorithm essentially matches a lower bound based
on a very simple idea: if in a given round the states of the best two arms are within σ

4 from
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one another, then in the next round with constant probability either one of them can be σ
4 above

another, so any algorithm incurs expected dynamic regret Ω(σ).5

Theorem 1.3. Consider the state-informed dynamic MAB problem with k arms of volatility σ.
Then the steady-state regret of any MAB algorithm is at least Ω(kσ2).

1.3 Results: the state-oblivious case

Our algorithm for the state-oblivious case builds on an algorithm from Auer et al. (2002a) for
the static MAB problem. That algorithm implicitly uses a simple ”padding” function that for a
given arm bounds the drift of an average reward from its (static) expected value. We design a
new algorithm ucbf which relies on a novel ”padding” function f that accounts for the changing
expected rewards. The analysis is quite technical: the specific results from Auer et al. (2002a)
do not directly apply to our setting; instead, we need to ”open up the hood” and combine the
technique from Auer et al. (2002a) with some new ideas.

Theorem 1.4. Consider the state-oblivious dynamic MAB problem with k arms such that each
arm i has volatility at most σi. Then there exists a MAB algorithm whose steady-state regret is
Õ(k σav), where σ2

av =
1
k

∑k
i=1 σ

2
i .

Note that (unlike the guarantee in Theorem 1.2), the guarantee here is in terms of an average
volatility rather than the maximal one.

1.4 Using off-the-shelf MAB algorithms?

We ask whether similar results can be obtained using off-the-shelf MAB algorithms. Specifically,
we investigate the following idea: take an off-the-shelf algorithm, run it and restart it every fixed
number of rounds.

For the state-informed version we consider the obvious ”greedy” approach: probe each arm,
choose the best one, play it for a fixed number m of rounds, restart. The greedy algorithm is
parameterized by the phase length m which can be tuned depending on the number of arms and their
volatility. We show that the greedy algorithm is indeed suboptimal as compared to Theorem 1.2:
the dependence on volatility (which is smaller than one) is linear rather than quadratic; we provide
both upper and lower bounds.

For the state-oblivious version one can leverage on the existing work for the adversarial MAB
problem Auer et al. (2002b). This work assumes no restrictions on the state evolution, but provides
guarantees only with respect to the best time-invariant policy, or a policy that switches arms a
bounded number of times. We consider the following algorithm: run a fresh instance of algorithm
exp3 from Auer et al. (2002b) for a fixed number m of rounds, then restart. Using the off-the-shelf
performance guarantees for exp3 and fine-tuning m, one can (only) bound the steady-state regret
by Õ((kσav)

2/3), which is inferior to the result in Theorem 1.4. It is an open question whether one
can obtain improved guarantees by tailoring the analysis in Auer et al. (2002b) to our setting.

5The former event happens with probability Ω(kσ), so the steady-state regret is Ω(kσ2). This is the entire proof!
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1.5 Extensions and open questions

We extend our results in several directions. First, we generalize the Markov-chain formulation Eq. (1.2)
to allow the random increments Xi(t) to come from other distributions which has a certain ”light-
tailed” property, such as the discrete random walk. Second, we consider the setting in which each
arm has a distinct fundamental interval. Third, we relax the assumption that the upper bound(s)
on volatilities are known to the algorithm.

The main question left open by this paper is to close the gap between the upper and lower bounds
for the state-oblivious dynamic MAB problem. The only lower bound we have is Theorem 1.3. We
conjecture that one may obtain a better bound based on the relative entropy-based technique
from Auer et al. (2002b). It is also possible that the algorithmic result can be improved, possibly
via a more refined mechanism for discounting information with time.

Another open question is whether one can obtain the optimal Õ(kσ2) steady-state regret for
the state-informed version in the case when k ≥ σ−1/2. Note that the greedy algorithm mentioned
in Section 1.4 achieves steady-state regret Õ(kσ) which is non-trivial for any k ≤ σ−1.

1.6 Organization of the paper

In Sections 2 and 3 we present our main results for the state-informed and the state-oblivious
versions, respectively. Section 4 discusses using off-the-shelf MAB algorithms. Section 5 covers the
extensions.

2 The state-informed dynamic MAB problem

We consider the state-informed dynamic MAB problem where the volatility of each arm is at most
σ. Recall that the state of arm i at time t is denoted µi(t).

For arm i and time t, the last-seen time τi(t) is the last time this arm has been played strictly
before time t; the last-seen state νi(t) = µi(τi(t)) is the corresponding state.

Definition 2.1. The leader in round t is the arm with a larger last-seen state, among the arms
played in rounds t− 1 and t− 2; break ties in favor of the arm played in round t− 1.

In our algorithm, the leader is our running estimate for an arm with the maximal state. We
alternate rounds in which we always exploit – play the leader, with rounds in which we may explore
other options. Since we define the leader in terms of the last two rounds only, our knowledge of its
state is essentially up-to-date.

Let ν∗(t) be the last-seen state of the leader in round t. Let csusp = Θ(log 1
σ )

1/2 be the factor
to be defined later.

Definition 2.2. An arm i is called suspicious at time t if

ν∗(t)− νi(t) ≤ csusp σ
√

t− τi(t). (2.1)

If an arm i is not suspicious at time t, then with high probability its current reward is less than
ν∗(t). If no arm is suspicious then, intuitively, the best bet is to play the leader. Roughly, our
algorithm behaves as follows: if the time is even it plays the current leader, and if the time is odd
it plays a suspicious arm if one exists, and the leader otherwise. To complete the description of the
algorithm, we need to specify what it does when there are multiple suspicious arms. In particular,
we need to guarantee that after an arm becomes suspicious, it is played eventually.
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Definition 2.3. An arm i is active at time t if it is not the leader and it has been suspicious at
some time t′ > τi(t). The activation time τacti (t) is the earliest such time t′.

An arm becomes active when it becomes suspicious. It stays active until it is played. The idea
is to play an active arm with the earliest activation time.

Algorithm 2.4. For bootstrapping, each arm is played once. At any later time t do the following.
If t is even, play the current leader. If t is odd play an active arm (with the earliest activation
time) if one exists, else play the leader.

We will use a slightly more refined algorithm which allows for a more efficient analysis. Essen-
tially, we give priority to arms whose state is close to the leader’s.

Definition 2.5. Arm i is high-priority at time t if it is active at this time and moreover τacti (t)−
τi(t) ≤ 4k.

Algorithm 2.6. For bootstrapping, each arm is played once. At any later time t do the following.
If t is even, play the current leader. If t is odd play an active arm if one exists, else play the leader.
If there are multiple active arms:

� if t ≡ 1 (mod 4) then play an active arm with the earliest activation time; break ties arbitrarily

� if t ≡ 3 (mod 4) then play a high-priority arm with the earliest activation time if one exists;
else, play any active arm; break ties arbitrarily.

The analysis of these two algorithms are very similar, except that Algorithm 2.4 has inefficiencies
which lead to an extra k2 factor in its regret. We focus on Algorithm 2.6.

Theorem 2.7. Consider the state-informed dynamic MAB problem with k arms, each with volatility
at most σ. Assume that k < σ−γ for some γ < 1

2 . Then Algorithm 2.6 achieves steady-state regret
O(k σ2 log2 1/σ).

In the rest of this section we prove Theorem 2.7.
Let R̄A(t) be the average dynamic regret up to time t. Then, letting Ti(t) be the set of times

arm i was played before and including time t, we have

E
[
R̄A(t)

]
=

1

t

∑
i∈[k]

∑
t′∈Ti(t)

E
[
µ∗(t′)− µi(t

′)
]
. (2.2)

Let us spread contributions of individual arms evenly over the corresponding idle time. Let us
define

∆µi(t) = µ∗(t)− µi(t),

∆τi(t) = τ+i (t)− τi(t),

where τ+i (t) is the next time arm i is played after time τi(t). In other words, τi(t) and τ+i (t) are
the two consecutive times arm i is played such that τi(t) < t ≤ τ+i (t). We re-write Eq. (2.2) as

E
[
R̄A(t)

]
=

1

t

∑
i∈[k]

∑
t′∈[t]

E

[
∆µi(τi(t

′))

∆τi(t′)

]
. (2.3)
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We define the contribution of arm i in round t as

Ci(t) =
∆µi(τi(t))

∆τi(t)
.

A crucial idea is that we upper-bound E[Ci(t)] for each round t separately. Namely, we prove that

E[Ci(t)] < O(σ2 log2 1
σ ). (2.4)

We identify the high-probability behavior of the processes {µi(t)}i∈[k]. Specifically, we consider

the Õ(
√
t) bound on deviations, and an O(1) bound on the number of near-optimal arms. A large

portion of our analysis is deterministic conditional on such behavior.

Definition 2.8. A real-valued function f is well-behaved on an interval [t1; t2] if for any t, t+∆t ∈
[t1; t2] we have

|f(t+ ∆t)− f(t)| < cwell σ
√

∆t. (2.5)

where cwell = Θ(log 1
σ )

1/2 will be chosen later.

Definition 2.9. An instance of the dynamic MAB problem is well-behaved on a time interval I if

(i) functions µ1(t), . . . , µk(t) are well-behaved on I;

(ii) at each time t ∈ I there are at most cnear = O(1) arms i such that

∆µi(t) < (8k + 15
√
k) cwell σ. (2.6)

Finally, a problem instance is called well-behaved near time t it is well-behaved on the time interval
[t− 3σ−2; t+ σ−2].

Remark 2.10. The expression in Eq. (2.6) is tailored to Eq. (2.14) in the subsequent analysis. The
event in question happens with probability at least 1 − O(cwell k

2 σ)cnear . Recall that we assume
k < σ−γ for some γ < 1

2 . Thus, a (large enough) constant cnear suffices to guarantee a sufficiently
low failure probability.

Choosing the parameters. The factors cwell and cnear are chosen so that for any fixed t a problem
instance is well-behaved near time t with probability at least 1 − σ−3. In Definition 2.1, define
csusp = 5 cwell.

Our conditionally deterministic guarantees (conditional on the problem instance being well-
behaved) are expressed by the following lemma.

Lemma 2.11 (The Deterministic Lemma). Suppose a problem instance is well-behaved near time
t. Fix arm i and let δ = ∆µi(t). Then:

(a) If δ = 0 and Ci(t) > 0 then

Ci(t) ≤ O(σ log 1
σ )/
√
t− τi(t), (2.7)

and moreover for some arm j ̸= i we have

∆µj(t) < O(σ log 1
σ )
√
t− τi(t). (2.8)
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(b) If δ ∈
(
0, σ log 1

σ

)
then Ci(t) ≤ O

(
σ log 1

σ

)
.

(c) If δ ≥ σ log 1
σ then Ci(t) ≤ O(σ2/δ) log 1

σ .

Let us use Lemma 2.11 to derive the main result.

Proof of Theorem 2.7: It suffices to prove Eq. (2.4). Let E(t) denote the event that the problem
instance is well-behaved near time t. By Lemma 2.11(a), letting x =

√
t− τi(t) and suppressing

the log 1
σ factors under the Õ(·) notation,

E[Ci(t) | ∆µi(t) = 0, E(t)] ≤ Õ(σ/x) Pr[∃j ̸= i : ∆µj(t) < Õ(σx)] (2.9)

≤ Õ(σ2). (2.10)

We use Lemma 2.11(b,c) to prove that

E [Ci(t) | ∆µi(t) > 0, E(t) ] ≤ O
(
σ2 log 1

σ

)
. (2.11)

For brevity, fix arm i and round t. Consider events

E+ = { E(t) and ∆µi(t) > 0 }
E0 = { E(t) and σ > ∆µi(t) > 0 }
Ej =

{
E(t) and σ · 2j > ∆µi(t) ≥ σ · 2j−1

}
, ∀j ∈ [ ȷ̄ ] ,

where ȷ̄ = ⌈log 1
σ ⌉. With this notation,

Pr [∆µi(t) ≤ δ | ∆µi(t) > 0, E(t) ] ≤ Õ(δ).

E [Ci(t) | E0 ] · Pr [ E0 | E+ ] ≤ (σ log 1
σ ) ·O(σ) (by Lemma 2.11(a))

≤ O(σ2 log 1
σ ).

E [Ci(t) | Ej ] · Pr [ Ej | E+ ] ≤ O

(
σ2 log 1

σ

σ 2j
· σ 2j+1

)
(by Lemma 2.11(b))

≤ O(σ2 log 1
σ ), ∀j ∈ [ ȷ̄ ] .

E [Ci(t) | E+ ] =

ȷ̄∑
j=0

E [Ci(t) | Ej ] · Pr [ Ej | E+ ]

≤ O(σ2 log2 1
σ ).

This completes the proof of Eq. (2.11), and accordingly of Eq. (2.4).

In the rest of this section we prove Lemma 2.11.

2.1 Deterministic bounds for the leader

We will argue deterministically assuming that the problem instance is well-behaved. We split our
argument into a chain of claims and lemmas. The proofs are quite detailed; one can skip them for
the first reading. For shorthand, let E [t1; t2] denote the event that the (fixed) problem instance is
well-behaved on the time interval [t1; t2].

First, we argue that the leader’s last-seen state, ν∗(·), does not decrease too much in one round.

10



Claim 2.12. If E [t− 2; t] then ν∗(t+ 1) ≥ ν∗(t)− 2 cwell σ.

Proof. Assume that t is even (if t is odd the proof proceeds similarly). Recall that the leader in
round t is some arm i played in one of the previous two rounds. It follows that

ν∗(t) = νi(t) ≤ µi(t) + 2 cwell σ.

Moreover, the leader (i.e., arm i) is played in round t and therefore ν∗(t+ 1) ≥ µi(t).

Second, each arm becomes active eventually.

Claim 2.13. Any arm i becomes active at most σ−2 rounds after it is played: τacti (t)− τi(t) ≤ σ−2

for any time t.

Proof. If t− τi(t) ≥ σ−2 then Eq. (2.1) is trivially true.

Third, we show that a currently maximal arm has been activated within 4k rounds from its
last-seen time, and therefore it has been played in the previous 8k rounds. The proof of this lemma
is one of the crucial arguments in our analysis.

Lemma 2.14. Suppose E [t− σ−2; t] and arm i is maximal at time t. Then

τacti (t)− τi(t) ≤ t− τacti (t) ≤ 4k.

Proof. Note that t− τacti (t) ≤ 4k, since otherwise after becoming active at time τacti (t) arm i would
have been played strictly before round t, contradiction.

Let τ = τi(t). For the sake of contradiction assume that

τacti (t)− τ > t− τacti (t). (2.12)

Since arm i is not suspicious at time t′ = τacti (t)− 1, by Definition 2.2 we have

ν∗(t′)− νi(t
′) ≥ csusp σ

√
t′ − τ . (2.13)

By Claim 2.13 the problem instance is well-behaved on [τ ; t]. It follows that

νi(t
′) = µi(τ) ≥ µi(t)− cwell σ

√
t− τ

ν∗(t′) = µj(t
′′) ≤ µj(t) + cwell σ

√
t− t′′,

where arm j is the leader in round t′, and t′′ is one of the two rounds preceding t′. Plugging this
into Eq. (2.13) and using Eq. (2.12), we see that µj(t) > µi(t), contradiction.

Fourth, we show that the leader’s last-seen state is not much worse than the maximal state.

Claim 2.15. If E [t− σ−2; t] then

µ∗(t)− ν∗(t) ≤ (8k +
√
8k) cwell σ.

Proof. Let µ∗(t) = µi(t) for some arm i, and let τ = τi(t) be the last time this arm was played. By
Lemma 2.14 we have t− τ ≤ 8k. Therefore

ν∗(τ + 1) ≥ µi(τ) ≥ µi(t)− cwell σ
√
8k,

and the claim follows by Claim 2.12.

11



Fifth, we show that high-priority arms are played very soon after they become active.

Claim 2.16. Suppose arm i is a high-priority active arm at time t. Assume E [t − σ−2; t]. Then
t− τacti (t) ≤ 4 cnear.

Proof. Fix time t and let t′ = τacti (t) be the activation time of arm i. Then by Definition 2.4 and
Definition 2.3

ν∗(t′)− νi(t
′) ≤ csusp σ

√
t− t′ ≤ csusp σ

√
4k.

Using Claim 2.15 to relate ν∗(t′) and µ∗(t′), and using the fact that νi(t
′) = µi(τ) and that µi(·) is

well-behaved, we obtain
∆µi(t

′) ≤ (8k + 15
√
k) cwell σ. (2.14)

Lemma follows by Definition 2.9(ii) which is, in fact, tailored to Eq. (2.14).

Now we have the tools needed to prove a stronger version of Claim 2.15: µ∗(t)− ν∗(t) ≤ Õ(σ).

Lemma 2.17. If the problem instance is well-behaved on [t−σ−2; t] then µ∗(t)−ν∗(t) ≤ O(cwell σ).

Proof. Let i be an active arm at time t. By Lemma 2.14 τacti (t) − τi(t) ≤ 4k, so at time τacti (t)
arm i is a high-priority active arm. By Claim 2.16 t− τacti (t) ≤ 4 cnear = O(1). By Lemma 2.14 it
follows that t− τi(t) ≤ O(1).

Now ν∗(τ +1) ≥ µi(τ) by definition of the leader; ν∗(t) ≥ ν∗(τ +1)−O(cwell σ) by Claim 2.12;
and also µ∗(t) ≤ µ∗(τ)+O(cwell σ) since the problem instance is well-behaved. Putting it together,
we obtain the lemma.

2.2 Proof of The Deterministic Lemma

Let τ = τi(t) and recall that we denote δ = ∆µi(t).
By Lemma 2.14 we have t − τ ≤ 8k. Since the problem instance is well-behaved on [t − 8k; t],

it follows that µ∗(·) is well-behaved, too, and therefore

|∆µi(t)− ∆µi(τ)| ≤ 2 cwell σ
√
t− τ , (2.15)

which immediately implies Eq. (2.7). To obtain Eq. (2.8) note that Eq. (2.15) in fact applies to
any arm j, in particular to an arm j that is maximal at time τ .

Parts (b,c) of Lemma 2.11 follow from these two inequalities:

∆τi(t) ≥ Ω(δ/σ)2/ log 1
σ , (2.16)

∆µi(τ) ≤ O(δ + σ log 1
σ ). (2.17)

(For part (b), we note that ∆τi(t) ≥ 1.)

Proof of Eq. (2.16): We consider two cases.
First, if we have ∆µi(τ) < δ/2 then by Eq. (2.15) we obtain

2 cwell σ
√
t− τ ≥ |∆µi(t)− ∆µi(τ)| ≥ δ/2,

and Eq. (2.16) follows since ∆τi(t) ≥ t− τ .
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Second, assume ∆µi(τ) ≥ δ/2. Then by Lemma 2.17 for any time t′ ∈ (τ ; t+ σ−2) we have

ν∗(t′)− µi(τ) ≥ µ∗(t′)−O(cwell σ) + ∆µi(τ)− µ∗(τ)

≥ δ/2− cwell σ
√
t′ − τ +O(1).

This is at least ≥ csusp σ
√
t′ − τ as long as it is the case that t′ − τ ≤ (12 cwell σ/δ)

−2. So for any
such t′ arm i is not suspicious, proving Eq. (2.16).

Proof of Eq. (2.17): First, note that if τacti (t)− τi(t) ≤ 4k then by Definition 2.5 arm i is a high-
priority active arm at time τacti (t), so by Claim 2.16 we have t−τacti (t) ≤ O(1) and so t−τi(t) ≤ O(1)
by Lemma 2.14. It follows by Eq. (2.15) that

∆µi(τ) ≤ ∆µi(t) +O(σ),

and we are done. In what follows we will assume that

τacti (t)− τi(t) > 4k. (2.18)

Note that for any time t′ we have

ν∗(t′) ≤ max(µ∗(t′ − 1), µ∗(t′ − 2))

≤ µ∗(t′) + 2 cwell σ.

Let t′ = τacti (t) − 1 be the round immediately preceding the activation time. Since arm i is not
suspicious at time t′,

csusp σ
√
t′ − τ ≤ ν∗(t′)− µi(τ)

≤ µ∗(t′)− µi(τ) + 2 cwell σ.

≤ ∆µi(t
′) + cwell σ(2 +

√
t′ − τ).

Since csusp = 5 cwell, it follows that

∆µi(t
′) + 2 cwell σ ≥ 4 cwell σ

√
t′ − τ . (2.19)

Combining Eq. (2.15) and Eq. (2.19), we obtain

∆µi(τ) ≤ ∆µi(t
′) + 2 cwell σ

√
t′ − τ

≤ 3
2 ∆µi(t

′) + 2 cwell σ.

Finally, by Eq. (2.15), Eq. (2.18) and Eq. (2.19) we obtain

∆µi(t
′) ≤ ∆µi(t) + 2 cwell σ

√
t− t′

≤ ∆µi(t) +
1
2 ∆µi(t

′) + 2 cwell σ.

∆µi(t
′) ≤ 2∆µi(t) + 4 cwell σ.

∆µi(τ
′) ≤ 3∆µi(t) + 6 cwell σ.
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3 The state-oblivious dynamic MAB problem

We consider the state-oblivious dynamic MAB problem with k arms where the volatility of each
arm i is at most σi.

Definition 3.1. For each arm i, Ni(t) is the number of times it has been played in the first t− 1
rounds, and W i(t) is the corresponding average reward. Let W i(0) = 0 if Ni(t) = 0. For shorthand,
let µi = µi(0) be the initial state.

Definition 3.2. Consider an instance of the state-oblivious dynamic MAB problem. A function
fi : N× N → R+ is a padding for arm i if the following two properties hold:

� fi(t, ti) is increasing in t and decreasing in ti,

� for any time t, letting ti = Ni(t) we have

Pr
[
|W i(t)− µi(0)| > fi(t, ti)

]
< O(t−4). (3.1)

The family {fi}i∈[k] is a padding for the problem instance.

We build on an algorithm ucb1 from Auer et al. (2002a) for the static MAB problem. We define
a generalization of ucb1, which we call ucbf , which is parameterized by a padding f = {fi}i∈[k].

Algorithm 3.3 (ucbf ). In each round t play any arm

i ∈ argmax
i∈[k]

[
W i(t) + fi(t, Ni(t))

]
.

The original ucb1 algorithm is defined for a specific padding f , and in fact does not explicitly
uses the notion of a padding. We introduce this notion here in order to extend the ideas from Auer
et al. (2002a) to our setting.

We incorporate the analysis from Auer et al. (2002a) via the following lemma which, essentially,
bounds the number of times a suboptimal arm is played by the algorithm.

Lemma 3.4 (Auer et al. Auer et al. (2002a)). Consider an instance of the state-oblivious MAB
problem with a padding f = {fi}i∈[k]. Consider the behavior of algorithm ucbf in the first t rounds.
Then for each arm i and any ti < t we have

fi(t, ti) ≤ 1
2 ∆µi(t) ⇒ E[Ni(t)] ≤ ti +O(1). (3.2)

This lemma is implicit in Auer et al. Auer et al. (2002a), where it is the crux of the main proof.
That proof considers the static MAB problem and (implicitly) a specific padding f .

We will use ucbf where f = {fi}i∈[k] is defined by

fi(t, ti) =
√

2 ln(t)/ti + σi
√
8t log t. (3.3)

Define the average dynamic regret of an algorithm A R̄A(t) = 1
t

∑
s∈[t]RA(s). We prove the

following guarantee for algorithm ucbf :
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Theorem 3.5. Consider the state-oblivious dynamic MAB problem with k arms. Suppose the
volatility of each arm i is at most σi. Then there exists time t0 such that

E[R̄ucbf (t0)] ≤ O(k σav) log
3/2(σ−1

av ), (3.4)

where σ2
av =

1
k

∑k
i=1 σ

2
i .

To obtain Theorem 1.4 from Theorem 3.5, we start a fresh instance of algorithm ucbf after
every t0 steps. We take advantage of the facts that (i) the ”restarting times” are deterministic and,
in particular, independent of the past history, and (ii) in any fixed round each µi(t) is distributed
independently and uniformly on [0; 1].

In the rest of this section we prove Theorem 3.5. We start with a very useful fact about the
state evolution µi(t). In general, if µi(0) >

1
2 then due to the influence of the upper boundary the

expected state E[µi(·)] drifts down from its initial value. The following claim upper-bounds such
drift.

Let us use a shorthand for the second summand in Eq. (3.3):

δi(t) = σi
√
8t log t.

Claim 3.6. Fix arm i and integer times t ≤ t∗. Then

Pr[ |µi(t)− µi | > δi] < t−3
∗ (3.5)

where µi = µi(0) and δi = δi(t∗), and therefore

E[µi(t) | µi] ≥ min(µi, 1− δi)− t−2
∗ . (3.6)

Proof. Recall that the state µi(t) is defined as fI(Bi(t)) where Bi is a Brownian motion with volatil-
ity σi, and fI is the ”projection” Eq. (1.1) into the interval I = [0; 1] with reflective boundaries.
Note that µi = Bi(0).

It follows that |µi(t)− µi| > δi only if |Bi(t)− µi| > δi. We know that for any c > 1 we have

Pr[ |Bi(t)− µi| > cσi
√
t] < 2 e−c2/2.

We obtain Eq. (3.5) setting c =
√
6 log t∗.

Now let us prove Eq. (3.6). Define

f(µ) = E[µi(t) |µi].

Note that if µ < 1
2 then f(µ) > µ. Also, note that f(µ) is increasing and f(12) =

1
2 by symmetry.

Therefore, it suffices to prove Eq. (3.6) under the assumption that 1
2 < µi ≤ 1− δi.

Consider T = min(t, TB), where

TB = min{s ∈ N : Bi(s) ̸∈ (0; 1)}.

Then Zs = µi(min(s, T )) is a martingale such that Z0 = µ and T is a bounded stopping time.
By the Optional Stopping Theorem it follows that E[ZT ] = µ. By Eq. (3.5) we have TB ≥ t with
probability at least 1− t−2

∗ , in which case T = t and µ = ZT = µi(t). Thus Eq. (3.6) follows.
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Using Claim 3.6, let us argue that Eq. (3.3) is indeed a padding. Essentially, the first summand
in Eq. (3.3) is tuned for an application of Chernoff-Hoeffding Bounds, whereas the second one
corrects for the drift.

Lemma 3.7. The family f defined by Eq. (3.3) is a padding.

Proof. We need to prove Eq. (3.1). Fix arm i and time t. Let {tj}∞j=1 be the enumeration of all

times when arm i is played. Let Xj = µi(tj) be the state of arm i in round t. Let X̂j be the actual
reward collected by the algorithm from arm i in round tj . Let us define the sums S =

∑
j∈[n]Xj

and S∗ =
∑

j∈[n] X̂j , where n = Ni(t) is the number of times arm i is played before time t. Let
µ = µi(0) and δ = δi(t).

We can rewrite Eq. (3.1) as follows:

Pr[|S∗ − µn| >
√
2n ln t+ δn] < O(t−4). (3.7)

Let F be the failure event when |µi(s) − µ| > δ for some s ∈ [t]. Recall that by Claim 3.6 the
probability of F is at most t−4. In the probability space induced by conditioning on X̂1, . . . , X̂j−1

and the event F̄ , we have

E[X̂j ] = E
[
E[X̂j |tj , Xj ]

]
= E [E[Xj |tj ] ]

= E[Xj ] ∈ [µ− δ, µ+ δ].

Going back to the original probability space,

E[X̂j | X̂1 . . . X̂j−1, F̄ ] ∈ [µ− δ, µ+ δ]. (3.8)

The Chernoff-Hoeffding bounds (applied to the probability space induced by conditioning on F̄ )
say precisely that the condition Eq. (3.8) implies the following tail inequality:

Pr
[
|Ŝ − µm| > δm+ a | F̄

]
≤ 2 e−2a2/m

for any a ≤ 0. We obtain Eq. (3.7) by taking a =
√
2m lnT .

To argue about algorithm ucbf , we will use the following notation:

Definition 3.8. We will use the following notation:
ρi(t) = min(µi, 1− δi(t)), µi = µi(0),
∆i = µ∗ − µi, µ∗ = µ∗(0)

S(t) = {arms i : ∆i ≥ 4δi(t)}.

Lemma 3.9. Consider any algorithm for the state-oblivious dynamic MAB problem. Then for each
arm i and time t ≥ k

E
[
Ni(t)W i(t) | µi

]
≥ ρi(t) E[Ni(t)]− t−2. (3.9)

The left-hand side of Eq. (3.9) is the total winnings collected by arm i up to time t. If the
bandit algorithm always plays arm i, then Ni(t) = t and the left-hand side of Eq. (3.9) is simply
equal to

∑
s E[µi(s)], so the lemma follows from Claim 3.6. In this sense, Lemma 3.9 is an extension

of Claim 3.6. The proof of Eq. (3.9) is a rather intricate exercise in conditional expectations and
martingales. We defer it to Section 3.1.

We combine Lemma 3.9 and Lemma 3.4 to derive a conditional bound on R̄ucbf (t):
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Corollary 3.10. For any time t we have

E
[
R̄ucbf (t) | µ1, . . . , µk

]
≤ k

t2
+O(1)

 ∑
i ̸∈S(t)

µ∗ − ρi(t)

+O(1t log t)

 ∑
i∈S(t)

1

∆i

 . (3.10)

Proof. Fix time t and let W i = W i(t), ρi = ρi(t) and Ni = Ni(t). Let R(t) be the left-hand side
of Eq. (3.10). Using Eq. (3.9),

tR(t) =
∑
i∈[k]

E[(µ∗ −W i)Ni]

≤
∑
i∈[k]

E[Ni] (µ
∗ − ρi) + t−2.

For each i ∈ S(t) we have µ∗ − ρi ≤ 2∆i and by Lemma 3.4

E[Ni(t)] ≤ 32 ln(m)/∆2
i +O(1).

We obtain Theorem 3.5 by integrating both sides of Eq. (3.10) with respect to µ1 . . . µk.

Proof of Theorem 3.5: Fix time t and let δi = δi(t) and ρi = ρi(t). Note that Eq. (3.10) is,
essentially, the sum over all arms. We partition the arms into three sets and bound the three
corresponding sums separately.

Note that the following holds for any fixed γ > 0: given µ∗ and the event {∆i > γ}, the random
variable µi is distributed uniformly on the interval [0;µ∗ − γ). We will use this property in the
forthcoming integrations.

First, we consider the set S = S(t). Conditional on µ∗,

E

[∑
i∈S

∆−1
i

]
=
∑
i∈[k]

E
[
∆−1

i | ∆i > 4δi
]
Pr[∆i > 4δi]

≤
∑
i∈[k]

lnσ−1
i ≤ O(k lnσ−1

av ). (3.11)

Second, let us consider the set S+ of all arms i such that 0 < ∆i < 4δi. Conditional on µ∗, we
obtain

E

∑
i∈S+

µ∗ − ρi

 ≤
∑
i∈[k]

O(δi) Pr[∆i < 4δi | ∆i > 0]

≤
∑

i∈[k] O(δi)min(1, δi/µ
∗).

Integrating over µ∗, we obtain

E
[∑

i∈S+ µ∗ − ρi
]
≤
∑

i∈[k] O(δ2i )

≤ O(k σ2
av t log t). (3.12)
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Third, we consider the set S∗ of all maximal arms, i.e., the set of all arms i such that ∆i = 0.
We show the main steps of the argument, omitting the details of some straightforward integrations:

Zi := I{∆i=0} (µ
∗ − ρi)

E[Zi] = E[E[Zi|µ∗]] = 1
k E[µ∗ − ρi] = O(δ2i )

E

[∑
i∈S∗

µ∗ − ρi

]
=
∑
i∈[k]

E[Zi] ≤ O(k σ2
av)(t log t). (3.13)

Finally, using( 3.11-3.13), we take expectations in Eq. (3.10):

E
[
R̄ucbf (t)

]
= O(kt log t)((σav t)

2 + log σ−1
av ).

The theorem follows if we take t0 = σav
√
log σ−1

av .

3.1 Proof of Lemma 3.9: conditional expectations

Fix arm i and time t. Let us introduce a more concise notation which gets rid of the subscript i.
Let µ = µi(0) and δ = δi(t), and denote N = Ni(t). For every time s, let Ys = µi(s), and let Xs be
the winnings from arm i at time s if it is played by the algorithm.6 Let ζs be equal to 1 if arm i is
played at time s, and 0 otherwise.

To prove Eq. (3.9), we will show that

E
[∑

s∈[t] ζsXs

]
= E

[∑
s∈[t] ζs Ys

]
(3.14)

≥ min(µ, 1− δ) E[N ] + t−2. (3.15)

Note that ζs and Xs are conditionally independent given Ys. It follows that

E [ζsXs |Ys] = E [ζs |Ys] E [Xs |Ys] = E [ζs |Ys] Ys
= E [ζs Ys |Ys] .

Taking expectations on both sides, we obtain

E[ζsXs] = E[ζs Ys],

which proves Eq. (3.14). Going from Eq. (3.14) to Eq. (3.15) is somewhat more complicated. In
what follows we denote S =

∑
t∈[m] ζs Ys.

Claim 3.11. If µ ≤ 1− δ then E[S] ≥ µ E[N ]− t−2.

Proof. As in Claim 3.6, we recall the definition µi(s) = fI(Bi(s)) where Bi is a Brownian motion
with volatility σi, and fI is the ”projection” Eq. (1.1) into the interval I = [0; 1] with reflective
boundaries. Note that µi = Bi(0).

For brevity, denote Ŷs = Bi(s), and define the corresponding shorthand Ŝ =
∑

s∈[t] ζs Ŷs. Let

F be the failure event when Ŷs ≥ 1 for some t ≤ m. Note that if this event does not occur, then

6That is, Xs is an independent random sample from distribution D(Ys), as defined in Section 1.1.
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Ys ≥ Ŷs for every time t ∈ [m] and therefore S ≥ Ŝ. We use this observation to express E[S] in
terms of E[Ŝ]. Let p := Pr[F ] and note that it is at most m−4. Then:

E[Ŝ] = (1− p) E[Ŝ | not F ] + p E[Ŝ |F ]

≤ (1− p) E[Ŝ | not F ] + p(µ+ tσi)

E[S] ≥ (1− p) E[S | not F ] + p E[S |F ]

≥ (1− p) E[Ŝ | not F ]

≥ E[Ŝ]− ptσi − p.

To prove the claim, it remains to bound E[Ŝ].
Let {sj}∞j=1 be the enumeration of all times when arm i is played. Note that N = max{j : sj ≤

t}. Define Ẑj = Ŷsj for each j. We would like to argue that {Ẑj}∞j=1 is a martingale and N is a
stopping time. More precisely, claim that this is true for some common filtration. Indeed, one way
to define such filtration {Fj}∞j=1 is to define Fj as the σ-algebra generated by sj+1 and all tuples

(sl, Zl, Z
∗
l , Ẑl) such that l ≤ j. Now using the Optional Stopping Theorem one can show that

E[Ŝ] =
∑

j∈[N ]Zj = E[N ] E[Ẑ0],

which proves the claim since Ẑ0 = µ.

To prove Eq. (3.15), it remains to consider the case µ > 1− δ.

Claim 3.12. if µ > 1− δ then
E[S] ≥ (1− δ) E[N ]− t−2.

Proof. Let T be the smallest time s such that Ys ≤ 1 − δ. Let {sj}∞j=1 be the enumeration of all
times when arm i is played, and let J = max j : tj ≤ T . Conditioning on T and J , consider the
entire problem starting from time T + 1. Then by Claim 3.11 we have:

E

[
m∑

s=T+1

ζs Ys |T, J

]
≥ (1− δ)(E[N ]− J)− t−2.

Let ST =
∑t

s=T+1 ζs Ys. It follows that

S = ST +
∑

t∈[T ] ζs Ys ≥ ST + (1− δ) J

E[S] = E[ST ] + (1− δ)E[J ]
≥ (1− δ) E[N − J ]− t−2 + (1− δ) E[J ]
≥ (1− δ) E[N ]− t−2.

4 Using off-the-shelf algorithms

In this section we investigate the following idea: take an off-the-shelf MAB algorithm, run it, and
restart it every fixed number of rounds. We consider both the state-informed and state-oblivious
versions of the dynamic MAB problem.

We use the following notation: there are k arms, each arm i has volatility σi, and the average
volatility σav is defined by σ2

av = 1
k

∑k
i=1σ

2
i . We rely on the following lemma:
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Lemma 4.1. Let µ∗ = µ∗(0) and let i∗ ∈ argmaxµi(0), ties broken arbitrarily. Then for any times
t ≤ t∗

E[µ∗ − µi∗(t)] ≤ O(k)(t−4
∗ + σ2

av t∗ log t∗). (4.1)

More generally, we can consider arbitrary fixed times

0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ t ≤ t∗

and define µ∗ = maxµi(ti) and i∗ ∈ argmaxµi(ti).

The lemma is obtained by combining Claim 3.6 and Eq. (3.13); we omit the details.

Remark. The intuition is that each arm i is probed in round ti, so that µi(ti) is the expected value
of the corresponding probe. This lemma is similar to Claim 3.6 in that it bounds the downwards
drift of E[µi(·)] which is caused by the proximity of the upper boundary. The difference is that here
we specifically consider a ”maximal” arm, e.g., when ti ≡ 0 we consider an arm which is maximal
at time 0.

4.1 State-informed version: greedy algorithm

For the state-informed version we consider a very simple, ”greedy” approach: probe each arm once,
choose one with the largest state, play it for a fixed number m − k of rounds, restart. Call this a
greedy algorithm with phase length m.

Theorem 4.2. Consider the state-informed dynamic MAB problem with k arms such that the
volatility of each arm i is σi. With phase length m = σav

√
log σ−1

av , the steady-state regret of the
greedy algorithm is at most

O(k σav log σ−1
av ), where σ2

av =
1
k

∑k
i=1σ

2
i .

Proof. For the algorithmic result, fix phase length m > k and consider a single phase of the greedy
algorithm. Assume without loss of generality that in the first k rounds of the phase our algorithm
plays arm i in step i. Let µi = µi(i) be the corresponding rewards, and let µ∗ be the largest of
them. Then the greedy algorithm chooses arm i∗ ∈ argmaxi∈[k] µi and plays it for m − k rounds.
Consider the t-th of these m−k rounds and let Yt = µi∗(t+k) be the state of arm i∗ in this round.
By Lemma 4.1 we have E[Yt] ≥ E[µ∗] − z, where z is the right-hand side of Eq. (4.1). Therefore,
letting W be the per-round average reward in this phase, we have

E[W ] ≥ 1
m

∑m−k
t=1 Yt ≥ m−k

m (E[µ∗]− z)

E[µ∗ −W ] ≤ z + k
m E[µ∗]

≤ O(kmσ2
av logm) + k

m(1 + 1
m)

= O(k σav)

√
log σ−1

av

for m = σav
√
log σ−1

av .

We provide a matching lower bound.

Theorem 4.3. Consider the setting in Theorem 4.2. Then the steady-state regret of the greedy
algorithm is Ω̃(k σav).
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Proof Sketch. For simplicity assume σi ≡ σ. It is known that in time t a Brownian motion with
volatility σ drifts by at least ∆ = Ω̃(σ

√
t) with high probability. Thus for each arm i with high

probability µi(t) ≤ 1−∆/2, regardless of the initial value µi(0). Now we can obtain a lower bound
that corresponds to Lemma 4.1: letting µ∗ = maxµi(i) and i∗ ∈ argmaxµi(i) be the arm chosen
by the greedy algorithm,

E[µ∗ − µi∗(t)] ≥ Ω̃(k σ2t), (4.2)

for any t > k. Now consider a given phase of the greedy algorithm. In the first k rounds the
algorithm accumulates regret Ω(k), and in each subsequent round t the regret is the left-hand side
of Eq. (4.2). The theorem follows easily.

4.2 State-oblivious version via adversarial MAB

For the state-oblivious dynamic MAB problem, we use a very general result of Auer et al. (2002b)
for the adversarial MAB problem. For simplicity, here we only state this result in terms of the
present setting.

Let WA(t) be the average reward collected by algorithm A during the time interval [1; t].

Theorem 4.4 (Auer et al. (2002b)). Consider the state-oblivious dynamic MAB problem with k
arms. Let Ai be an algorithm that plays arm i at every step. Then there exists an algorithm, call
it Exp3, such that for any arm i and any time t

E[WExp3(t)] ≥ E(WAi(t))−O(kt log t)
1/2.

For our problem, we restart exp3 every m steps, for some fixed m; call this algorithm exp3(m).

Theorem 4.5. Consider the state-informed dynamic MAB problem with k arms such that the
volatility of each arm i is at most σi. Then there exists m such that algorithm exp3(m) has
steady-state regret

O(k σav log σ−1
av )

2/3, where σ2
av =

1
k

∑k
i=1σ

2
i .

Proof. Let use shorthand A = exp3(m). Let µ∗ be the maximal expected reward at time 0, and
suppose it is achieved by some arm i∗. Let A∗ be the algorithm that plays this arm at every step.
Let Yt = µi∗(t) the state of arm i∗ in round t. Then by Lemma 4.1 we have E[Yt] ≥ E[µ∗] − zm,
where z(m) is the right-hand side of Eq. (4.1). Therefore:

E[WA∗(m)] = E
[
E[WA∗(m) |Y1 , . . . , Ym]

]
= 1

m E [
∑m

t=1 Yt ]

≥ µ∗ − z(m) (4.3)

E[R̄A(m)] = E
[
µ∗ −WA∗(m)

]
+ E

[
WA∗(m)−WA(m)

]
Now using Eq. (4.3) and Theorem 4.4 we obtain

E[R̄A(m)] ≤ z(m) +O( k
m logm)1/2. (4.4)

We choose m that minimizes the right-hand side of Eq. (4.4).
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We note in passing that we can also get non-trivial (but worse) guarantees for the state-oblivious
dynamic MAB problem using two other off-the-shelf approaches:

� a version of the greedy algorithm which probes each arm a few times in the beginning of each
phase,

� a version of Theorem 4.4 in which the benchmark algorithm is allowed to switch arms a few
times (Auer et al., 2002b).

Essentially, the first approach is too primitive, while the second one makes overly pessimistic
assumptions about the environment. In both cases we obtain guarantees of the form Õ(kσav)

γ ,
γ < 2

3 , which are inferior to Theorem 4.5.

5 Extensions

Recall that the state evolution of arm i in the dynamic MAB problem is described by Eq. (1.2),
where the i.i.d. increments µi(t) are distributed with respect to some fixed distribution Xi. Can
we relax the assumption that Xi is normal?

Definition 5.1. Random variable X is stochastically (ρ, σ)-bounded if its moment-generating func-
tion satisfies

E[er(X−E[x])] ≤ er
2σ2/2 for |r| ≤ ρ.

This is precisely the condition needed to establish an Azuma-type inequality: if S is the sum
of t independent stochastically (ρ, σ)-bounded random variables with zero mean, then with high
probability S ≤ Õ(σ

√
t). Specifically, for any λ ≤ 1

2 ρ σ
√
t we have

Pr
[
S > λσ

√
t
]
≤ exp(−λ2/2). (5.1)

Note that a normal distribution N (0, σ) is (∞, σ)-bounded, and any distribution with support
[−σ, σ] is (1, σ)-bounded.

We can recover all of our algorithmic results if we assume that each distribution Xi has zero
mean and is stochastically (ρ, σi)-bounded for some σi, where ρ > 0 is a fixed absolute constant.
We re-define the volatility of arm i as the infimum of all σ such that Xi is (ρ, σ)-bounded.

It is appealing to tackle a more general setting when the only restriction on each distribution Xi

is that it has mean 0 and variance σ2
i . We can extend our analysis (at the cost of somewhat weaker

guarantees) if we further assume that, essentially, the absolute third moment of Xi is comparable to
σ3
i . Then instead of Eq. (5.1) we can use a weaker inequality called the non-uniform Berry-Esseen

theorem (Neammanee, 2005):

Pr
[∑t

s=1µi(s) > σi t
γ
]
≤ O

(
( ρiσi

)3 t1−3γ
)
, (5.2)

for any γ > 1/2, where ρ3i = E[ |µi(s)|3 ]. We omit further discussion of this extension from the
present version.

Let us discuss one other direction in which our setting can be generalized. Recall that in
the dynamic MAB problem the state of each arm evolves on the same interval I = [0; 1] (see
Section 1.1) which we term the fundamental interval. What if we allow each arm to have a distinct
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fundamental interval? All our algorithms fit this extended setting with little or no modification.
The performance guarantees should look like a weighted sum of contributions from different arms,
where the weights depend (perhaps in rather complicated way) on the respective fundamental
intervals. To illustrate this point, we worked out the guarantees for the two algorithms discussed
in Section 4, see Appendix A for details. It is an open question to derive similar closed-form
guarantees for the other algorithms in this paper.

Recall that in all our results we assumed that the volatilities are known to the algorithm. In
fact, this assumption is not necessary: we are interested in the stationary performance of our
algorithms and, as it turns out, we can afford to learn the static parameters of the model. Roughly,
the argument goes as follows. It suffices for our analysis if for each arm an algorithm knows a 2-
approximate upper bound on volatility σi, rather than the exact value. One can learn such bound
by playing arm i for O(log2 σi) rounds, with failure probability as low as O(σ−10

i ), and repeat this
learning phase every σ−1

i rounds (we omit the details).
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A Distinct fundamental intervals

Recall that in the dynamic MAB problem the state of each arm evolves on the same interval
I = [0; 1] (see Section 1.1) which we term the fundamental interval. In this section we consider a
generalization in which we allow each arm to have a distinct fundamental interval. We work out
the guarantees for the two algorithms discussed in Section1.4.

The main contribution of this appendix is that we find a way to upper-bound the steady-state
regret of the respective algorithms in terms of reasonably defined averages of the arms’ properties.
The actual derivations are rather tedious but not that illuminating; we omit them from this version.

A.1 The setting and notation

We consider the following setting. There are k arms. Each arm has volatility σi and fundamental
interval [ai; bi]. Without loss of generality we assume that b1 ≤ . . . bk and that max ai < min bi.
(If the latter fails then we can always ignore the arm with the smallest upper boundary bi.) To
simplify the derivation we assume that maxσi ≤ 1

3 .
Define the weight of arm i as

wi =
k∏
l=i

bi − al
bl − al

,

Define the average volatility σav and the average length as

σ2
av =

∑
i∈[k]wi(bi − ai)σ

2
i∑

i∈[k]wi(bi − ai)

dav = 1
k

∑
i∈[k]wi(bi − ai).

To see that the quantities we defined above are reasonable as averages, note that if all arms
have the same fundamental interval [a; b] then all weights are 1 and dav = b− a and, moreover, the
average volatility σav coincides with the one defined in the body of the paper.

A.2 Results

We present two results that extend, respectively, Theorem 4.2 and Theorem 4.5 to the setting
from Section A.1. In both cases the algorithms are exactly the same. The main tool is a version
of Lemma 4.1, where the guarantee Eq. (4.1) looks exactly the same in our notation, except the
right-hand side is multiplied by dav.

Theorem A.1. Consider the deterministic dynamic MAB problem in the setting from Section A.1.
Let amin = min ai. Then for phase length

m = σ−1
av

√
(bk − amin)/ log σ

−1
av

the greedy algorithm has steady-state regret

O(k σav)

√
(bk − amin) dav log σ−1

av .

Theorem A.2. Consider the state-informed dynamic MAB problem in the setting from Section A.1.
Then there exists m such that algorithm exp3(m) has steady-state regret

O(dav)
1/3(k σav log σ−1

av )
2/3.
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