Corruption-robust exploration in episodic RL

Alex Slivkins (Microsoft Research NYC)

joint work with

Thodoris Lykouris Max Simchowitz Wen Sun

MSR-NYC Berkeley Cornell
Prelude: from bandits to RL

<table>
<thead>
<tr>
<th></th>
<th>Bandits</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global constraints</td>
<td>Limited-supply dynamic pricing,</td>
<td>Brantley, Dudik, Lykouris, Miryoosefi,</td>
</tr>
<tr>
<td></td>
<td>Bandits with knapsacks</td>
<td>Simchowitz, S., Sun: NeurIPS’20</td>
</tr>
<tr>
<td>Incentives</td>
<td>Incentivized exploration</td>
<td>Simchowitz & S., 2020</td>
</tr>
<tr>
<td>Lipschitz assumptions</td>
<td>Lipschitz bandits,</td>
<td>Sinclair, Banerjee, Yu: Sigmetrics`20</td>
</tr>
<tr>
<td></td>
<td>adaptive discretization</td>
<td>Cao & Krishnamurthy: NeurIPS`20</td>
</tr>
<tr>
<td>Between IID & adversarial</td>
<td>adversarial corruptions</td>
<td>This talk:</td>
</tr>
<tr>
<td></td>
<td>Starting from [Lykouris et al., STOC`18]</td>
<td>RL with adversarial corruptions</td>
</tr>
</tbody>
</table>

PSA: Thodoris Lykouris will give a longer talk on this work on Nov 3 in Virtual RL Theory Seminar
Episodic RL with adversarial corruptions

- Fixed and unknown nominal MDP
 - known state space, action space;
 - randomized (& unknown) rewards & transitions
- K episodes of H steps each, $T = KH$ steps total.
- At each episode k: algorithm commits to a policy π_k, executes π_k in the MDP for H steps, observes state-actions-rewards trajectory.
 - policy maps histories to actions, can be randomized
 - bandit feedback: only for (current state, chosen action)
- Regret = $K \cdot \text{rew}(\pi^*) - \sum_k \text{rew}(\pi_k)$ w.r.t. best policy π^*
 - e.g., $\text{poly}(H) \cdot \sqrt{\#\text{states} \cdot \#\text{actions} \cdot T}$ (Azar et al.`17, Jin et al.`19)

Goals: scale well with C, approx. state-of-art for $C = 0$
Our results

Tabular RL: regret $C \cdot \text{poly}(H) \cdot \sqrt{SAT}$
- \sqrt{SAT} dependence is optimal, even for IID

First non-trivial guarantees for RL with non-IID transitions & bandit feedback
- Also: first computationally efficient guarantees for any feedback model

Linear RL: regret $\text{poly}(H) \left(C \sqrt{d^3 + dA} \cdot T + C^2 \sqrt{dT} \right)$
- expected rewards and transition probs are linear in (known) d-dim feature vectors
- optimal dependence on T, state-of-art dependence on d, even for IID

Transformation: (some) algorithms for IID environment \rightarrow corruption-robust algorithms
- Provable guarantees known only for Tabular and Linear variants of episodic RL
- e.g., well-defined for deep RL
Prior work

Bandits: stochastic vs adversarial
- Classic papers: UCB1 and EXP3
- Best of both worlds
 - Bubeck & S. ‘12; Seldin & S. ‘14; Auer & Chiang ‘16; Seldin & Lugosi ‘17; Wei & Luo ‘18
 - intermediate regimes
 - starting from Seldin & S. ‘14
- Adversarial corruptions
 - Lykouris-Mirrokni- Paes Leme ‘18
 - improved regret bounds
 - Gupta-Koren-Talwar ‘19, Zimmert & Seldin ‘19
 - many extensions
 - LLS19, CKW19, BJS20, KLPS20, AAKLM20

Episodic RL
- **Stochastic**: optimistic value iteration
 - starting from Jaksch-Ortner-Auer’10
 - worst-case optimal regret rates
 - Azar et al.’17, Dann et al. ‘17
 - instance-dependent regret rates
 - Zanette &Brunskill ’19, Simchowitz &Jamieson ’19
- **Adversarial rewards**: full feedback
 - transition probabilities known (Even-Dar+ ‘10),
 - unknown (Rosenberg+ ‘19),
 - or adversarial (Abbasi-Yadkori+ ‘13)
 - ... bandit feedback
 - trans. pros known (Neu+ ‘10) or not (Jin+ ‘19)
Prior work: how to resolve uncertainty?

Active sets

- works for bandits
- underlies the corruption-robust algorithm in Lykouris et al. `18

Fails for RL: "any reasonable version" suffers regret $\min(K, A^H)$ on a "combination lock instance"

K episodes of H steps each, A actions

Optimism

- works for RL: optimistic value iteration
- vast majority of Episodic RL algorithms except Jin et al.’19 and Russo’19

Fails for corruptions, even for bandits

Suffices to corrupt $O(\log T)$ rounds: reward 0 each time algorithm picks best arm
Optimistic Value Iteration with active sets

For each step h from H down to 1
- update Q_h using V_{h+1}, rewards & transition probs
 - UCB via optimistic reward estimates
 - LCB via pessimistic reward estimates
 - use both “local” and “global” data
- update π^* using Q_h
 - use UCBs
 - restrict to active sets
- update V_h using Q_h
 - compute UCBs and LCBs
 - recompute active sets (of actions)

Starting at state x, action a, step h

$Q_h(x, a)$: value if continued optimally

$V_h(x) = \max_a Q_h(x, a)$

$\pi^*_h(x) = \arg\max_a Q_h(x, a)$

Value iteration (VI)
Optimistic VI
Optimistic VI with active sets

“Base Algorithm”
Full algorithm: Base Learners

Each Base Learner (BL) ℓ runs a separate instance of Base Algorithm

- robust against a given level of corruption $C = 2^\ell$
- “local data”: data assigned to this BL
- “global data”: union of data from all BLs

Need “global data” because different BLs may traverse different trajectories across state space

At each step of each episode: randomly switch to a more robust BL (larger ℓ)

- carefully chosen, data-independent probs
- sufficient prob of switching to a more robust BL for the rest of the episode
- episode’s data assigned to the most robust BL used in this episode

More robust BL provide supervision for less robust BL via “global data”
Analysis

General framework to analyze Base Learners with active sets
• beyond UCB selection (or uniform selection)

Bellman errors
\[\hat{Q}_h(x, a) - \left(r^*(x, a) + \hat{V}_{h+1} \cdot p^*(x, a) \right) \]

Error in Bellman update
\[\hat{Q}_h(x, a) - \left(\hat{r}(x, a) + \hat{V}_{h+1} \cdot \hat{p}(x, a) \right) \]

Decomposition: express regret in terms of Bellman Errors

Compare policy \(\pi \) with UCB policy

Visitation ratio
\[\max_{\text{steps } h<\tau} \max_{x,a} \frac{\mathcal{M}'(x,a)}{\mathcal{M}(x,a)} \]

policy \(\pi' \): what if we switch to UCB after step \(h \)

\(\mathcal{M}, \mathcal{M}' \) occupancy measures for \(\pi, \pi' \) at step \(\tau > h \)

\[\Pr[(x_\tau, a_\tau) = (x, a)] \]
Zoom out

RL challenge: inject enough exploration into a complex behavior
- optimism = best available hammer e.g., one that ensures corruption-robustness

Design principle: randomly switch to a (more) reliable version of optimism e.g., more robust Base Learner
- general framework for analysis
- proof of concept: a new algorithm for “stochastic” episodic RL, start with active sets & uniform exploration, inject optimism => optimal regret
- this machinery could be applicable to other domains
Extensions & Open Questions

Instance-dependent regret bounds: \(C \cdot \text{poly}(H) \cdot \frac{\Delta S}{\text{MinGap}} \cdot \log(SAT) \)

- constant \(C \): matches state-of-art for the IID case (Simchowitz & Jamieson’19)

Open Q: mitigate the linear dependence on \(C \)
- make it additive rather than multiplicative?
- non-trivial guarantees for \(C > \sqrt{T} \)?
- \(o(C) \) dependence, preferably \(\sqrt{C} \)
 ... if we only count regret for non-corrupted rounds?

Yes for bandits
Gupta-Koren-Talwar ’19;
Zimmert & Seldin ‘20

PSA: Thodoris Lykouris will give a longer talk on this work on Nov 3 in Virtual RL Theory Seminar