Incentivizing and Coordinating Exploration

Part II: Bayesian Models with Transfers

Bobby Kleinberg
Cornell University

ALT 2020 Tutorial
San Diego, 8 Feb 2020
Scope
- Mechanisms with monetary transfers
- Bayesian models of exploration
- Agents maximize expected utility minus cost
Scope
- Mechanisms with monetary transfers
- Bayesian models of exploration
- Agents maximize expected utility minus cost

Application: incentivizing “crowdsourced exploration”
E.g. online product recommendations with fully observable history.
Scope

- Mechanisms with monetary transfers
- Bayesian models of exploration
- Agents maximize expected utility minus cost

Key abstraction: Undiscounted terminal decision process (UTDP)

- Generalizes multi-armed bandits & Weitzman’s “box problem”
- A simple “index-based” policy is optimal.
- Proof introduces a key quantity: *deferred value*. [Weber, 1992]
 - Aids in adapting analysis to strategic settings.
Application 1: Multi-Armed Bandit

- One planner
- n choices ("arms")

- Arm i has random payoff sequence drawn i.i.d. from F_i
- Pull an arm: receive next element of payoff sequence.
- Maximize geometric discounted reward, $\sum_{t=0}^{\infty} (1 - \delta)^t r_t$.
Application 2: Job Search

- One applicant
- n firms
- Firm i has interview cost c_i, match value $v_i \sim F_i$
- Special case of the “box problem”. [Weitzman, 1979]
Strategic issues

Firms compete to hire \rightarrow inefficient investment in interviews.
Firms compete to hire \rightarrow inefficient investment in interviews.

Competition \rightarrow sunk cost.
Firms compete to hire \rightarrow inefficient investment in interviews.
Competition \rightarrow sunk cost.
Anticipating sunk cost \rightarrow too few interviews.
Strategic issues

Firms compete to hire \rightarrow inefficient investment in interviews.

Competition \rightarrow sunk cost.

Anticipating sunk cost \rightarrow too few interviews.
Strategic issues

Firms compete to hire → inefficient investment in interviews.
Competition → sunk cost.
Anticipating sunk cost → too few interviews.

Social learning → inefficient investment in exploration.
Each individual is myopic, prefers exploiting to exploring.
Strategic issues

“Arms” are strategic.

Time steps are strategic.
Undiscounted terminal decision process

Given *n* Markov chains, each with...
- state set S_i, terminal states $T_i \subset S_i$
- transition probabilities
- reward function $R_i : S_i \rightarrow \mathbb{R}$

Design policy π that, in any state-tuple (s_1, \ldots, s_n),
- chooses one Markov chain, i, to undergo state transition,
- receives reward $R(s_i)$

Stop the first time a MC enters a terminal state.

Maximize expected total reward.
Interview Markov Chain

-1

0 1 5 10 25

Interview
Evaluate
Hire
Interview UTDP
Interview UTDP
Interview UTDP
Interview UTDP
Interview UTDP
Interview UTDP
Multi-Stage Interview Markov Chain

Diagram:

-1

-5

0 5 10 25

Interview

Fly-Out

Evaluate

Hire
Multi-Armed Bandit as UTDP

Markov chain interpretation

State of an arm represents Bayesian posterior, given observations.

\[
\text{Beta}(1, 1)
\]

\[
\frac{1}{2}
\]
Multi-Armed Bandit as UTDP

Markov chain interpretation
State of an arm represents Bayesian posterior, given observations.

\[
\begin{align*}
\text{Beta}(2, 1) & \quad \text{Beta}(1, 2) \\
\frac{1}{3} & \quad \frac{2}{3}
\end{align*}
\]
Multi-Armed Bandit as UTDP

Markov chain interpretation
State of an arm represents Bayesian posterior, given observations.
Multi-Armed Bandit as UTDP

Markov chain interpretation
State of an arm represents Bayesian posterior, given observations.

$\beta(1, 1)$
$\beta(2, 1)$
$\beta(1, 2)$

δ
Part 2:

Solving Undiscounted Terminal Decision Processes

Dumitriu, Tetali, & Winkler, *On Playing Golf with Two Balls*
Kleinberg, Waggoner, & Weyl, *Descending Price Optimally Coordinates Search*
Consider one Markov chain (arm) in isolation.

Stopping game $\Gamma(M, s, \sigma)$
- Markov chain M starts in state s.
- In a non-terminal state s', you may **continue** or **stop**.
- **Continue**: Receive payoff $R(s')$. Move to next state.
- **Stop**: game ends.
- In a terminal state, game ends and you pay penalty σ.

Gittins index
The *Gittins index* of (non-terminal) state s is the maximum σ such that the game $\Gamma(M, s, \sigma)$ has an optimal policy with positive probability of reaching a terminal state.
Consider one Markov chain (arm) in isolation.

The **Gittins index** of (non-terminal) state s is the maximum σ such that the game $\Gamma(M, s, \sigma)$ has an optimal policy with positive probability of reaching a terminal state.
Gittins Index and Deferred Value

Consider one Markov chain (arm) in isolation.

\[\sigma(s_1) = 0 \]

\[\sigma(s_2) = 5 \]

Gittins index

The **Gittins index** of (non-terminal) state \(s \) is the maximum \(\sigma \) such that the game \(\Gamma(M, s, \sigma) \) has an optimal policy with positive probability of reaching a terminal state.
Consider one Markov chain (arm) in isolation.

The Gittins index of (non-terminal) state s is the maximum σ such that the game $\Gamma(M, s, \sigma)$ has an optimal policy with positive probability of reaching a terminal state.
Consider one Markov chain (arm) in isolation.

\[\sigma(s_0) = 2 \]
\[\sigma(s_1) = 0 \]
\[\sigma(s_2) = 5 \]

Deferred value

The \textit{deferred value} of Markov chain \(M \) is the random variable

\[\kappa = \min_{1 \leq t < T} \{ \sigma(s_t) \} \]

where \(T \) is the time when the Markov chain enters a terminal state.
An optimal stopping rule for $\Gamma(\mathcal{M}, s_0, \sigma)$ must
- always stops in a state s with $\sigma(s) < \sigma(s_0)$
- never stop in a state s with $\sigma(s) > \sigma(s_0)$.
Amortization Lemma

Non-exposed stopping rules

A stopping rule for Markov chain \mathcal{M} is *non-exposed* if it never stops in a state with $\sigma(s_\tau) > \min\{\sigma(s_t) | t < \tau\}$.

For a stopping rule τ, define $\mathbb{A}(\tau)$ (abbreviated \mathbb{A}) by

$$
\mathbb{A}(\tau) = \begin{cases}
1 & \text{if } s_\tau \in \mathcal{T} \\
0 & \text{otherwise.}
\end{cases}
$$

Assume Markov chain \mathcal{M} satisfies

1. **Almost sure termination (AST):** With probability 1, the chain eventually enters a terminal state.

2. **No free lunch (NFL):** In any state s with $R(s) > 0$, the probability of transitioning to a terminal state is positive.
Amortization Lemma

If Markov chain \mathcal{M} satisfies AST and NFL, then every stopping rule τ satisfies $\mathbb{E} \left[\sum_{0 < t < \tau} R(s_t) \right] \leq \mathbb{E}[\mathcal{A}_\kappa]$, with equality if the stopping rule is non-exposed.

Proof Sketch.

1. Time step t is non-exposed if $\sigma(s_t) = \min\{\sigma(s_1), \ldots, \sigma(s_t)\}$.
2. Break time into “episodes”: subintervals consisting of one non-exposed step followed by zero or more exposed steps.
3. Prove the inequality by summing over episodes.
Amortization Lemma

If Markov chain \mathcal{M} satisfies AST and NFL, then every stopping rule τ satisfies $\mathbb{E} \left[\sum_{0 < t < \tau} R(s_t) \right] \leq \mathbb{E}[A_\kappa]$, with equality if the stopping rule is non-exposed.
A UTDP policy is optimal if and only if, in each state-tuple \((s_1, \ldots, s_n)\), it advances a Markov chain whose state \(s_i\) has maximum Gittins index, or if all indices are negative then it stops.

Proof Sketch. Gittins index policy induces a non-exposed stopping rule for each \(\mathcal{M}_i\) and always advances \(i^* = \arg\max_i \{\kappa_i\}\) into a terminal state unless \(\kappa_{i^*} < 0\). Hence

\[
\mathbb{E}[\text{Gittins}] = \mathbb{E}[\max_i (\kappa_i)^+]
\]

whereas amortization lemma implies

\[
\mathbb{E}[\text{OPT}] \leq \mathbb{E}[\max_i (\kappa_i)^+].
\]
Part 3:

Social Learning

Frazier, Kempe, Kleinberg, & Kleinberg, *Incentivizing Exploration*.
A Model Based on Multi-Armed Bandits

k arms have independent random types that govern their (time-invariant) reward distribution when selected.

Users observe all past rewards before making their selection.
\(k \) arms have independent random types that govern their (time-invariant) reward distribution when selected.

Users observe all past rewards before making their selection.

Platform’s goal: maximize \(\sum_{t=0}^{\infty} (1 - \delta)^t r_t \)

User \(t \)’s goal: maximize \(r_t \)
Incentivized Exploration

Incentive payments

At time t, announce reward $c_{t,i} \geq 0$ for each arm i. User now chooses i to maximize $\mathbb{E}[r_{i,t}] + c_{i,t}$.

Our platform and users have a common posterior at all times, so platform knows exactly which arm a user will pull, given a reward vector.

An equivalent description of our problem is thus:

- Platform can adopt any policy π.
- Cost of a policy pulling arm i at time t is $r_{t}^{\text{max}} - r_{i,t}$, where r_{t}^{max} denotes myopically optimal reward.
Suppose, for platform’s policy π:
- reward $\geq (1 - a) \cdot \text{OPT}$.
- payment $\leq b \cdot \text{OPT}$.

We say π achieves loss pair (a, b).

Definition

(a, b) is achievable if for every multi-armed bandit instance, \exists policy achieving loss pair (a, b).

Main Theorem

Loss pair (a, b) is achievable if and only if
$$\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}.$$
Suppose, for platform's policy π:
- reward $\geq (1 - a) \cdot \text{OPT}$.
- payment $\leq b \cdot \text{OPT}$.

We say π achieves loss pair (a, b).

Definition

(a, b) is achievable if for every multi-armed bandit instance, \exists policy achieving loss pair (a, b).

Main Theorem

Loss pair (a, b) is achievable if and only if $\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}$.
Achievable region is convex, closed, upward monotone.

Main Theorem

Loss pair \((a, b)\) is achievable if and only if \(\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}\).
Incentive Cost

Achievable region is convex, closed, upward monotone.

Set-wise increasing in δ.

Main Theorem

Loss pair (a, b) is achievable if and only if $\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}$.
The Achievable Region

Achievable region is convex, closed, upward monotone.
Set-wise increasing in δ.
$(0.25,0.25)$ and $(0.1,0.5)$ achievable for all δ.

Main Theorem

Loss pair (a, b) is achievable if and only if $\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}$.
Achievable region is convex, closed, upward monotone.

Set-wise increasing in δ.

$(0.25,0.25)$ and $(0.1,0.5)$ achievable for all δ.

You can always get $0.9 \cdot \text{OPT}$ while paying out only $0.5 \cdot \text{OPT}$.

Main Theorem

Loss pair (a, b) is achievable if and only if $\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}$.
A Hard Instance

Infinitely many “collapsing” arms M with prob. $\frac{1}{M} \delta^2$, else 0.

(Type fully revealed when pulled.)
A Hard Instance

Infinitely many “collapsing” arms M with prob. $\frac{1}{M} \delta^2$, else 0.

One arm whose payoff is always $\phi \cdot \delta$.

Extreme points of achievable region correspond to:

- **OPT**: pick a fresh collapsing arm until high payoff is found.
- **MYO**: always play the safe arm.
A Hard Instance

Infinitely many “collapsing” arms M with prob. $\frac{1}{M} \delta^2$, else 0.

One arm whose payoff is always $\phi \cdot \delta$.

Extreme points of achievable region correspond to:

- **OPT**: reward ≈ 1, cost $\approx \phi - \delta$. $(a, b) = (0, \phi - \delta)$
- **MYO**: always play the safe arm.
A Hard Instance

Infinitely many “collapsing” arms M with prob. $\frac{1}{M} \delta^2$, else 0.

One arm whose payoff is always $\phi \cdot \delta$.

Extreme points of achievable region correspond to:

- **OPT**: reward ≈ 1, cost $\approx \phi - \delta$. $(a, b) = (0, \phi - \delta)$
- **MYO**: reward ϕ, cost 0. $(a, b) = (1 - \phi, 0)$
A Hard Instance

Infinitely many “collapsing” arms M with prob. $\frac{1}{M} \delta^2$, else 0.

One arm whose payoff is always $\phi \cdot \delta$.

Extreme points of achievable region correspond to:

- **OPT**: reward ≈ 1, cost $\approx \phi - \delta$. $(a, b) = (0, \phi - \delta)$
- **MYO**: reward ϕ, cost 0. $(a, b) = (1 - \phi, 0)$
A Hard Instance

Infinitely many “collapsing” arms M with prob. $\frac{1}{M} \delta^2$, else 0.

One arm whose payoff is always $\phi \cdot \delta$.

Extreme points of achievable region correspond to:

- **OPT:** reward ≈ 1, cost $\approx \phi - \delta$. $(a, b) = (0, \phi - \delta)$
- **MYO:** reward ϕ, cost 0. $(a, b) = (1 - \phi, 0)$
The line segment joining $(0, \phi - \delta)$ to $(1 - \phi, 0)$ is tangent to the curve $\sqrt{\frac{x}{1-\delta}} + \sqrt{\frac{y}{1-\delta}} = \sqrt{1-\delta}$ at

\[
x = \frac{1}{1-\delta} (1 - \phi)^2
\]
\[
y = \frac{1}{1-\delta} (\phi - \delta)^2
\]

- **OPT:** reward ≈ 1, cost $\approx \phi - \delta$. $(a, b) = (0, \phi - \delta)$
- **MYO:** reward ϕ, cost 0. $(a, b) = (1 - \phi, 0)$
Diamonds in the Rough

The line segment joining \((0, \phi - \delta)\) to \((1 - \phi, 0)\) is tangent to the curve \(\sqrt{x} + \sqrt{y} = \sqrt{1 - \delta}\) at

\[
x = \frac{1}{1-\delta}(1 - \phi)^2
\]

\[
y = \frac{1}{1-\delta}(\phi - \delta)^2
\]

- **OPT**: reward \(\approx 1\), cost \(\approx \phi - \delta\). \((a, b) = (0, \phi - \delta)\)
- **MYO**: reward \(\phi\), cost 0. \((a, b) = (1 - \phi, 0)\)
The inequality

\[\sqrt{x} + \sqrt{y} \geq \sqrt{1 - \delta} \]

holds if and only if

\[\forall p \in (0, 1) \quad \frac{x}{p} + \frac{y}{1 - p} \geq 1 - \delta \]

- **OPT:** reward \(\approx 1 \), cost \(\approx \phi - \delta \). \((a, b) = (0, \phi - \delta) \)
- **MYO:** reward \(\phi \), cost 0. \((a, b) = (1 - \phi, 0) \)
Proof of achievability is by contradiction. Suppose \((a, b)\) unachievable and \(\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}\). Then \(\exists p \in (0, 1)\) such that \(\forall\) achievable \(x, y\),

\[
\frac{x}{p} + \frac{y}{1-p} > 1 - \delta
\]

To reach a contradiction, must show that \(\forall p \in (0, 1)\) \(\exists \pi\) s.t.

\[
\mathbb{E} \left[\frac{1}{p} \text{Payoff}(\pi) - \frac{1}{1-p} \text{Cost}(\pi) \right] \geq \frac{1}{p} - (1 - \delta).
\]
Lagrangean Relaxation

Proof of achievability is by contradiction. Suppose \((a, b)\) unachievable and \(\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}\).
Then \(\exists p \in (0, 1)\) such that \(\forall\) achievable \(x, y\),

\[
\frac{1-x}{p} - \frac{y}{1-p} < \frac{1}{p} - (1 - \delta)
\]

To reach a contradiction, must show that \(\forall p \in (0, 1)\) \(\exists \pi\) s.t.

\[
\mathbb{E} \left[\frac{1}{p} \text{Payoff}(\pi) - \frac{1}{1-p} \text{Cost}(\pi) \right] \geq \frac{1}{p} - (1 - \delta).
\]
Time-Expanded Policy

We want a policy that makes \(\mathbb{E} \left[\frac{1}{p} \text{Payoff}(\pi) - \frac{1}{1-p} \text{Cost}(\pi) \right] \) large.

The difficulty is \(\text{Cost}(\pi) \). Cost of pulling an arm depends on its state and on the state of the myopically optimal arm.

Game plan. Use randomization to bring about a cancellation that eliminates the dependence on the myopically optimal arm.

Play MYO with probability \(p \), \(\pi \) with probability \(1 - p \).

If \(\pi \) is set to earn \(r \), MYO set to earn \(r + \Delta \), then

\[
\frac{1}{p} \text{Payoff} = \frac{r}{p} \text{ for sure, plus } \frac{\Delta}{p} \text{ with prob } p \\
\frac{1}{1-p} \text{Cost} = \frac{\Delta}{1-p} \text{ with prob } 1 - p.
\]
The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$

Maintain a FIFO queue of states for each arm, tail is current state. At each time t, toss a coin with bias p.

Heads: Offer no incentive payments.
- User plays *myopically*. Push new state into tail of queue.

Tails: Apply π to heads of queues to select arm.
- Push that arm’s new state into tail of queue, remove head.
- Pay user the difference vs. myopic.
The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$

Maintain a FIFO queue of states for each arm, tail is current state. At each time t, toss a coin with bias p.

Heads: Offer no incentive payments.
 User plays *myopically*. Push new state into tail of queue.

Tails: Apply π to heads of queues to select arm.
 Push that arm’s new state into tail of queue, remove head.
Pay user the difference vs. myopic.
The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$

Maintain a FIFO queue of states for each arm, tail is current state.
At each time t, toss a coin with bias p.

Heads: Offer no incentive payments.
User plays myopically. Push new state into tail of queue.

Tails: Apply π to heads of queues to select arm.
Push that arm’s new state into tail of queue, remove head.
Pay user the difference vs. myopic.
Time-Expanded Policy

The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$

Maintain a FIFO queue of states for each arm, tail is current state. At each time t, toss a coin with bias p.

Heads: Offer no incentive payments.
- User plays *myopically*. Push new state into tail of queue.

Tails: Apply π to heads of queues to select arm.
- Push that arm’s new state into tail of queue, remove head.
- Pay user the difference vs. myopic.
The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$

Maintain a FIFO queue of states for each arm, tail is current state. At each time t, toss a coin with bias p.

Heads: Offer no incentive payments.
 - User plays *myopically*. Push new state into tail of queue.

Tails: Apply π to heads of queues to select arm.
 - Push that arm’s new state into tail of queue, remove head.
 - Pay user the difference vs. myopic.
The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$

Maintain a FIFO queue of states for each arm, tail is current state. At each time t, toss a coin with bias p.

Heads: Offer no incentive payments.
 User plays *myopically*. Push new state into tail of queue.

Tails: Apply π to heads of queues to select arm.
 Push that arm’s new state into tail of queue, remove head.
 Pay user the difference vs. myopic.
Time-Expanded Policy

<table>
<thead>
<tr>
<th>The time-expansion of policy π with parameter p; $\text{TE}(\pi, p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain a FIFO queue of states for each arm, tail is current state.</td>
</tr>
<tr>
<td>At each time t, toss a coin with bias p.</td>
</tr>
<tr>
<td>Heads: Offer no incentive payments.</td>
</tr>
<tr>
<td>User plays myopically. Push new state into tail of queue.</td>
</tr>
<tr>
<td>Tails: Apply π to heads of queues to select arm.</td>
</tr>
<tr>
<td>Push that arm’s new state into tail of queue, remove head.</td>
</tr>
<tr>
<td>Pay user the difference vs. myopic.</td>
</tr>
</tbody>
</table>

Lagrangian payoff analysis. In a state where MYO would pick i and π would pick j, expected Lagrangian payoff is $\frac{r_{j,t}}{p}$. Due to cancellation of cost with MYO bonus.

If s is at the head of j’s queue at time t, then $\mathbb{E}\left[\frac{r_{j,t}}{p} | s\right] = \frac{1}{p} R_j(s)$.
Stuttering Arms

The “no-op” steps scale payoffs by $\frac{1}{p}$ and modify the Markov chain to have self-loops in every state with transition probability $(1 - \delta)p$.
Lemma

Let $\phi = 1 - (1 - \delta)p$. If $\tilde{\sigma}(s)$ denotes the Gittins index of state s in the modified Markov chain, we have $\tilde{\sigma}(s) \geq \phi \cdot \sigma(s)$ for every s.
Lemma

Let $\phi = 1 - (1 - \delta)p$. If $\tilde{\sigma}(s)$ denotes the Gittins index of state s in the modified Markov chain, we have $\tilde{\sigma}(s) \geq \phi \cdot \sigma(s)$ for every s.

If true, this implies . . .

1. $\tilde{\kappa}_i \geq \phi \cdot \kappa_i$

2. Gittins index policy π for modified Markov chains has expected payoff $\mathbb{E}[\max_i \tilde{\kappa}_i] \geq \phi \cdot \mathbb{E}[\max_i \kappa_i] = \phi$.

3. Policy $\text{TE}(\pi, p)$ achieves

$$\mathbb{E} \left[\frac{1}{p} \text{Payoff} - \frac{1}{1-p} \text{Cost} \right] \geq \frac{\phi}{p} = \frac{1}{p} - (1 - \delta).$$

. . . which completes the proof of the main theorem.
Lemma

Let $\phi = 1 - (1 - \delta)p$. If $\tilde{\sigma}(s)$ denotes the Gittins index of state s in the modified Markov chain, we have $\tilde{\sigma}(s) \geq \phi \cdot \sigma(s)$ for every s.

By definition of Gittins index, \mathcal{M} has a stopping rule τ such that

$$\mathbb{E} \left[\sum_{t < \tau} R(s_t) \right] \geq \sigma(s) \cdot \Pr(s_\tau \in \mathcal{T}) > 0.$$

Let $\tilde{\tau}$ be the equivalent stopping rule for $\tilde{\mathcal{M}}$, i.e. $\tilde{\tau}$ keeps going until it reaches a state in \mathcal{T} or a state where τ stops.

Observation 1: $\tilde{\tau}$ stochastically dominates τ, due to stuttering.

Observation 2: By Wald’s equation,

$$\mathbb{E}[\sum_{t < \tilde{\tau}} R(\tilde{s}_t)] = R(s) \cdot \mathbb{E}\tilde{\tau} \geq R(s) \cdot \mathbb{E}\tau = \mathbb{E}[\sum_{t < \tau} R(s_t)].$$
Lemma

Let $\phi = 1 - (1 - \delta)p$. If $\tilde{\sigma}(s)$ denotes the Gittins index of state s in the modified Markov chain, we have $\tilde{\sigma}(s) \geq \phi \cdot \sigma(s)$ for every s.

\[1 - \phi = (1 - \delta)p \]

In every state s_t, $\Pr(s_t \to T \text{ in } \tilde{\mathcal{M}}) = \frac{\delta}{\phi} = \frac{1}{\phi} \Pr(s_t \to T \text{ in } \mathcal{M})$.

Summary: Comparing $\tilde{\tau}$ in $\tilde{\mathcal{M}}$ with τ in \mathcal{M},

- expected reward is weakly greater,
- expected penalty is scaled by $\frac{1}{\phi}$

If penalty is $\phi \cdot \sigma(s)$, $\tilde{\tau}$ at least breaks even $\implies \tilde{\sigma}(s) \geq \phi \cdot \sigma(s)$
Summary of Main Result

Incentive Cost

Opportunity Cost

Main Theorem

Loss pair \((a, b)\) is achievable if and only if \(\sqrt{a} + \sqrt{b} \geq \sqrt{1 - \delta}\).

- Principal can always achieve 90% of social surplus while paying back only 50% to users via incentive payments.
- Simple policies that randomize between \textit{laissez-faire} and providing incentives for optimal learning are approx. optimal.
- Worst-case instances comprise “diamonds in the rough” alongside a safe alternative.
“Live as if you were to die tomorrow. Learn as if you were to live forever.”
“Live and learn as if you were to die tomorrow with probability p and to live forever with probability $1 - p$.\"
The foregoing model assumed agents have identical preferences. Han & Kempe (WINE 2015) extended this to a model where

- agents’ preferences over arms are identical
- agents’ exchange rates between money and arm-utility vary
- principal receives noisy signal of exchange rate.

Achievable region can still be characterized.

- “Diamonds in the rough” are still worst-case.
- Time-expansions of OPT still attain every achievable loss pair.
- In time expansion, \(p = \Pr(MYO) \) becomes signal dependent.
Chen, Frazier, and Kempe (COLT 2018) analyzed a model where

- agents’ preferences over arms vary
- arms, agents characterized by attribute vectors
- utility = dot product plus mean-zero sub-Gaussian noise
- pull an arm ⇒ observe noisy attribute vector
- agent attributes never observed

They presented a policy with regret $O(Ne^{2/p} + LN \log^3(T))$, assuming N arms, each favored by at least p fraction of agents.

L denotes “density of near ties”:

$$\Pr(\text{diff btw best, 2nd-best arms } \leq \varepsilon) = O(L\varepsilon) \text{ as } \varepsilon \to 0$$

Main theme: exploration comes for free when agents prefer different arms.
Strategic Arms

Arms (e.g. firms) strategize about when/if they are pulled.

Optimal mechanisms are complicated.

- Agents report all private information to center . . .
- which runs Gittins index policy . . .
- and charges VCG payments.

Descending-price mechanisms have small constant price of anarchy. [Kleinberg, Waggoner, & Weyl 2016]

- proof uses deferred value amortization lemma, “smoothness” arguments
- extends to combinatorial domains, e.g. matchings, matroids (cf. follow-up work by Sahil Singla [2018, 2019])
- sequential posted price mechanisms also have constant PoA; analysis combines deferred values with prophet inequalities.
Conclusion

- **Undiscounted terminal decision processes**: versatile model of information acquisition in Bayesian settings
 - ...when time steps are strategic
 - ...when alternatives ("arms") are strategic.
- Optimal policy, absent incentive issues: *Gittins index policy*.
- Analysis tool: *deferred value* and *amortization lemma*.
 - Interfaces cleanly with equilibrium analysis of simple mechanisms, smoothness arguments, prophet inequalities, etc.
 - **Beautiful but fragile**: usefulness vanishes rapidly as you vary the assumptions.
Open questions: incentivizing exploration using money

- **Extend to contextual bandits**
 - No Gittins index theorem for Bayesian contextual bandits!
 - Can we characterize achievable region anyway?
 - Success story: Han & Kempe (2015) solves a very special case

- **Hard constraints** on budget and/or social welfare

- **Non-martingale arms**, e.g. pulling an arm represents one round of training a person or an ML model

- **Non-myopic agents**
 - Repeat customers have some incentive to explore arms . . .
 - but free ridership is still a problem.
 - Is finite population always better than the infinite-population limit? Can we quantify how much better?

- **Combine incentive payments and information design**
 - Agents don’t observe history, as in first half of tutorial.
 - Could small incentive payments yield a huge gain in regret?